ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive iterative singular value thresholding algorithm to low-rank matrix recovery

118   0   0.0 ( 0 )
 نشر من قبل Angang Cui
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In our latest work, a non-convex fraction function is studied to approximate the rank function in affine matrix rank minimization problem and translate the NP-hard affine matrix rank minimization problem into a transformed affine matrix rank minimization problem. A scheme of iterative singular value thresholding algorithm is generated to solve the regularized transformed affine matrix rank minimization problem. However, one of the drawbacks for our iterative singular value thresholding algorithm is that the parameter $a$, which influences the behaviour of non-convex fraction function in the regularized transformed affine matrix rank minimization problem, needs to be determined manually in every simulation. In fact, how to determine the optimal parameter $a$ is not an easy problem. Here instead, in this paper, we will generate an adaptive iterative singular value thresholding algorithm to solve the regularized transformed affine matrix rank minimization problem. When doing so, our new algorithm will be intelligent both for the choice of the regularized parameter $lambda$ and the parameter $a$.



قيم البحث

اقرأ أيضاً

Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers h ave developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the well-known stochastic iterative hard thresholding algorithm to the tensor framework in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.
119 - Pini Zilber , Boaz Nadler 2021
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton linearization. On the theoretical front, we derive recovery guarantees for GNMR in both the matrix sensing and matrix completion settings. A key property of GNMR is that it implicitly keeps the factor matrices approximately balanced throughout its iterations. On the empirical front, we show that for matrix completion with uniform sampling, GNMR performs better than several popular methods, especially when given very few observations close to the information limit.
145 - Zhengyuan Zhou , Yi Ma 2020
We discuss how to evaluate the proximal operator of a convex and increasing function of a nuclear norm, which forms the key computational step in several first-order optimization algorithms such as (accelerated) proximal gradient descent and ADMM. Va rious special cases of the problem arise in low-rank matrix completion, dropout training in deep learning and high-order low-rank tensor recovery, although they have all been solved on a case-by-case basis. We provide an unified and efficiently computable procedure for solving this problem.
This paper is devoted to proposing a general weighted low-rank recovery model and designs a fast SVD-free computational scheme to solve it. First, our generic weighted low-rank recovery model unifies several existing approaches in the literature.~Mor eover, our model readily extends to the non-convex setting. Algorithm-wise, most first-order proximal algorithms in the literature for low-rank recoveries require computing singular value decomposition (SVD). As SVD does not scale properly with the dimension of the matrices, these algorithms becomes slower when the problem size becomes larger. By incorporating the variational formulation of the nuclear norm into the sub-problem of proximal gradient descent, we avoid to compute SVD which results in significant speed-up. Moreover, our algorithm preserves the {em rank identification property} of nuclear norm [33] which further allows us to design a rank continuation scheme that asymptotically achieves the minimal iteration complexity. Numerical experiments on both toy example and real-world problems including structure from motion (SfM) and photometric stereo, background estimation and matrix completion, demonstrate the superiority of our proposed algorithm.
211 - Pan Shang , Lingchen Kong 2019
Low rank matrix recovery is the focus of many applications, but it is a NP-hard problem. A popular way to deal with this problem is to solve its convex relaxation, the nuclear norm regularized minimization problem (NRM), which includes LASSO as a spe cial case. There are some regularization parameter selection results for LASSO in vector case, such as screening rules, which improve the efficiency of the algorithms. However, there are no corresponding parameter selection results for NRM in matrix case. In this paper, we build up a novel rule to choose the regularization parameter for NRM under the help of duality theory. This rule claims that the regularization parameter can be easily chosen by feasible points of NRM and its dual problem, when the rank of the desired solution is no more than a given constant. In particular, we apply this idea to NRM with least square and Huber functions, and establish the easily calculated formula of regularization parameters. Finally, we report numerical results on some signal shapes, which state that our proposed rule shrinks the interval of the regularization parameter efficiently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا