ﻻ يوجد ملخص باللغة العربية
Low rank matrix recovery is the focus of many applications, but it is a NP-hard problem. A popular way to deal with this problem is to solve its convex relaxation, the nuclear norm regularized minimization problem (NRM), which includes LASSO as a special case. There are some regularization parameter selection results for LASSO in vector case, such as screening rules, which improve the efficiency of the algorithms. However, there are no corresponding parameter selection results for NRM in matrix case. In this paper, we build up a novel rule to choose the regularization parameter for NRM under the help of duality theory. This rule claims that the regularization parameter can be easily chosen by feasible points of NRM and its dual problem, when the rank of the desired solution is no more than a given constant. In particular, we apply this idea to NRM with least square and Huber functions, and establish the easily calculated formula of regularization parameters. Finally, we report numerical results on some signal shapes, which state that our proposed rule shrinks the interval of the regularization parameter efficiently.
Low-rank matrix recovery is a fundamental problem in signal processing and machine learning. A recent very popular approach to recovering a low-rank matrix X is to factorize it as a product of two smaller matrices, i.e., X = UV^T, and then optimize o
This paper develops a new class of nonconvex regularizers for low-rank matrix recovery. Many regularizers are motivated as convex relaxations of the matrix rank function. Our new factor group-sparse regularizers are motivated as a relaxation of the n
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton
We prove that it is possible for nonconvex low-rank matrix recovery to contain no spurious local minima when the rank of the unknown ground truth $r^{star}<r$ is strictly less than the search rank $r$, and yet for the claim to be false when $r^{star}
The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In o