ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the circumnuclear absorbing medium of the buried AGN in NGC 1068 through NuSTAR observations

60   0   0.0 ( 0 )
 نشر من قبل Alessandra Zaino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Zaino




اسأل ChatGPT حول البحث

We present the results of the latest NuSTAR monitoring campaign of the Compton-thick Seyfert 2 galaxy NGC 1068, composed of four $sim$50 ks observations performed between July 2017 and February 2018 to search for flux and spectral variability on timescales from 1 to 6 months. We detect one unveiling and one eclipsing event with timescales less than 27 and 91 days, respectively, ascribed to Compton-thick material with $N_H=(1.8pm0.8)times10^{24}$ cm$^{-2}$ and $N_Hgeq(2.4pm0.5)times10^{24}$ cm$^{-2}$ moving across our line of sight. This gas is likely located in the innermost part of the torus or even further inward, thus providing further evidence of the clumpy structure of the circumnuclear matter in this source. Taking advantage of simultaneous Swift-XRT observations, we also detected a new flaring ULX, at a distance $dsim$30 (i.e. $sim$2 kpc) from the nuclear region of NGC 1068, with a peak X-ray intrinsic luminosity of $(3.0pm0.4)times10^{40}$ erg s$^{-1}$ in the 2-10 keV band.



قيم البحث

اقرأ أيضاً

We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Sey fert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.
We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collecte d in 2000 and 2014, simultaneously fitting the reflection grating spectrometer (RGS) and EPIC-pn spectra of each epoch, for the first time, with the photoionisation model, PION, in SPEX. We find that four PION components are required to fit the majority of the emission lines in the spectra of NGC 1068, with $log xi=1-4$, $log N_H>26 m^{-2}$, and $v_{out}=-100$ to $-600 kms^{-1}$ for both epochs. Comparing the ionisation state of the components shows almost no difference between the two epochs, while there is an increase in the total column density. To estimate the locations of these plasma regions from the central black hole we compare distance methods, excluding the variability arguments as there is no spectral change between observations. Although the methods are unable to constrain the distances, the locations are consistent with the narrow line region, with the possibility of the higher ionised component being part of the broad line region, but we cannot conclude this for certain. In addition, we find evidence for emission from collisionally ionised plasma, while previous analysis had suggested that collisional plasma emission was unlikely. However, although PION is unable to account for the FeXVII emission lines at 15 and 17 AA, we do not rule out that photoexcitation is a valid processes to produce these lines too. NGC 1068 has not changed, both in terms of the observed spectra or from our modelling, within the 14 year time period between observations. This suggests that the ELRs are fairly static relative to the 14 year time frame between observations, or there is no dramatic change in the black hole variability.
We demonstrate a robust method of resolving the star-formation and AGN contributions to emission lines using two very well known AGN systems: NGC 1365, and NGC 1068, using the high spatial resolution data from the TYPHOON/PrISM survey. We expand the previous method of calculating the AGN fraction by using theoretical-based model grids rather than empirical points. The high spatial resolution of the TYPHOON/PrISM observations show evidence of both star formation and AGN activity occurring in the nuclei of the two galaxies. We rebin the data to the lower resolutions, typically found in other integral field spectroscopy surveys such as SAMI, MaNGA, and CALIFA. The results show that when rebinned from the native resolution of TYPHOON (< 200 pc/pixel) to 1 kpc/pixel, the effects include a roughly 3 kpc increase in the radius of measured AGN activity, and a factor of 2 to 7 increase in the detection of low surface brightness features such as shocks. All of this information is critical, because information on certain physical processes may be lost at varying resolutions. We make recommendations for analysing data at current IFU survey resolutions.
176 - X. Zhao , S. Marchesi , M. Ajello 2020
The obscuration observed in active galactic nuclei (AGN) is mainly caused by dust and gas distributed in a torus-like structure surrounding the supermassive black hole (SMBH). However, properties of the obscuring torus of the AGN in X-ray have not be en fully investigated yet due to the lack of high-quality data and proper models. In this work, we perform a broadband X-ray spectral analysis of a large, unbiased sample of obscured AGN (with line-of-sight column density 23$le$log(NH)$le$24) in the nearby universe which has high-quality archival NuSTAR data. The source spectra are analyzed using the recently developed borus02 model, which enables us to accurately characterize the physical and geometrical properties of AGN obscuring tori. We also compare our results obtained from the unbiased Compton thin AGN with those of Compton-thick AGN. We find that Compton thin and Compton-thick AGN may possess similar tori, whose average column density is Compton thick (N$rm _{H,tor,ave}$ $sim$1.4$times$10$^{24}$ cm$^{-2}$), but they are observed through different (under-dense or over-dense) regions of the tori. We also find that the obscuring torus medium is significantly inhomogeneous, with the torus average column densities significantly different from their line-of-sight column densities (for most of the sources in the sample). The average torus covering factor of sources in our unbiased sample is c$_f$=0.67, suggesting that the fraction of unobscured AGN is $sim$33%. We develop a new method to measure the intrinsic line-of-sight column density distribution of AGN in the nearby universe, which we find the result is in good agreement with the constraints from recent population synthesis models.
We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J_upper=14-30 (E_upper/k_B = 580-2565 K) range, all of which are consistent with ari sing from within the central 10 (700 pc). The detected transitions are modeled as arising from 2 different components: a moderate excitation (ME) component close to the galaxy systemic velocity, and a high excitation (HE) component that is blueshifted by ~80 km s^{-1}. We employ a large velocity gradient (LVG) model and derive n_H2~10^{5.6} cm^{-3}, T_kin~170 K, and M_H2~10^{6.7} M_sun for the ME component, and n_H2~10^{6.4} cm^{-3}, T_kin~570 K, and M_H2~10^{5.6} M_sun for the HE component, although for both components the uncertainties in the density and mass are plus/minus (0.6-0.9) dex. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution, and find that the ME transitions are consistent with these lines arising in the ~200 pc diameter ring of material traced by H_2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H_2 ring, but a better kinematic match is found with a clump of infalling gas ~40 pc north of the AGN. We discuss the prospects of placing the HE component near the AGN, and conclude that while the moderate thermal pressure precludes an association with the ~1 pc radius H_2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN, and might then provide the N_H~10^{25} cm^{-2} column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to J_upper=50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا