ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dense Molecular Gas in the Circumnuclear Disk of NGC 1068

133   0   0.0 ( 0 )
 نشر من قبل Julia Kamenetzky
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Seyfert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.



قيم البحث

اقرأ أيضاً

We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J_upper=14-30 (E_upper/k_B = 580-2565 K) range, all of which are consistent with ari sing from within the central 10 (700 pc). The detected transitions are modeled as arising from 2 different components: a moderate excitation (ME) component close to the galaxy systemic velocity, and a high excitation (HE) component that is blueshifted by ~80 km s^{-1}. We employ a large velocity gradient (LVG) model and derive n_H2~10^{5.6} cm^{-3}, T_kin~170 K, and M_H2~10^{6.7} M_sun for the ME component, and n_H2~10^{6.4} cm^{-3}, T_kin~570 K, and M_H2~10^{5.6} M_sun for the HE component, although for both components the uncertainties in the density and mass are plus/minus (0.6-0.9) dex. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution, and find that the ME transitions are consistent with these lines arising in the ~200 pc diameter ring of material traced by H_2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H_2 ring, but a better kinematic match is found with a clump of infalling gas ~40 pc north of the AGN. We discuss the prospects of placing the HE component near the AGN, and conclude that while the moderate thermal pressure precludes an association with the ~1 pc radius H_2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN, and might then provide the N_H~10^{25} cm^{-2} column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to J_upper=50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus. [Abridged]
We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-pc scales. We present NIR IFU data with a resolution of ~50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ~100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for non-circular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100-pc scales aligned with the megamaser disk. In contrast, the high ionization lines and Br-gamma trace outflow along the 100 pc-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Br-gamma have consistent properties between the two galaxies.
Sensitive observations with ALMA allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species ($^{13}$CO $J$ = 1--0, C$^{18}$O $J$ = 1--0, $^{13}$CN $N$ = 1--0, CS $J$ = 2--1, SO $J_N$ = 3$_2$--2$_1$, HNCO $J_{Ka,Kc}$ = 5$_{0,5}$--4$_{0,4}$, HC$_3$N $J$ = 11--10, 12--11, CH$_3$OH $J_K$ = 2$_K$--1$_K$, and CH$_3$CN $J_K$ = 6$_K$--5$_K$) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central $sim$1 arcmin ($sim$4.3 kpc) of this galaxy was observed in the 100 GHz region covering $sim$96--100 GHz and $sim$108--111 GHz with an angular resolution of $sim4times2$ (290 pc$times$140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categories: (1) Molecules concentrated in the circumnuclear disk (CND) (SO $J_N$ = 3$_2$--2$_1$, HC$_3$N $J$ = 11--10, 12--11, and CH$_3$CN $J_K$ = 6$_K$--5$_K$), (2) Molecules distributed both in the CND and the starburst ring (CS $J$ = 2--1 and CH$_3$OH $J_K$ = 2$_K$--1$_K$), (3) Molecules distributed mainly in the starburst ring ($^{13}$CO $J$ = 1--0 and C$^{18}$O $J$ = 1--0). Since most of the molecules such as HC$_3$N observed in the CND are easily dissociated by UV photons and X-rays, our results indicate that these molecules must be effectively shielded. In the starburst ring, the relative intensity of methanol at each clumpy region is not consistent with those of $^{13}$CO, C$^{18}$O, and CS. This difference is probably caused by the unique formation and destruction mechanisms of CH$_3$OH.
We present the results of our ALMA Cycle 2 high angular resolution (0.1-0.2 arcsec) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J=3-2 and HCO+ J=3-2 emission lines. For the firs t time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ~1.1 mm (~266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.5-2.0 arcsec on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ~10 pc and ~several x 10^5 Msun, respectively. HCN-to-HCO+ J=3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially resolved component at ~2.0 arcsec on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v2=1f) J=3-2 emission lines were detected for HCN and HCO+ across the field of view.
We present the results of our ALMA Cycle 4 high-spatial-resolution (0.04-0.07) observations, at HCN J=3-2 and HCO+ J=3-2 lines, of the nucleus of NGC 1068, the nearby prototypical type 2 active galactic nucleus (AGN). Our previous ALMA observations i dentified the compact emission of these lines at the putative location of the torus around a mass-accreting supermassive black hole. We now report that we have detected the rotation of this compact emission, with the eastern and western sides being redshifted and blueshifted, respectively. Unlike the previously reported CO J=6-5 emission, both the morphological and dynamical alignments of the HCN J=3-2 and HCO+ J=3-2 emission are roughly aligned along the east-west direction (i.e., the expected torus direction), suggesting that these molecular lines are better probes of a rotating dense molecular gas component in the torus. The western part of the torus exhibits larger velocity dispersion and stronger emission in the HCN J=3-2 and HCO+ J=3-2 lines than the eastern part, revealing a highly inhomogeneous molecular torus. The dense molecular gas in the torus and that of the host galaxy at 0.5-2.0 from the AGN along the torus direction are found to be counter-rotating, suggesting an external process happened in the past at the NGC 1068 nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا