ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizing split-pulse x-ray photon correlation spectroscopy to measure ultrafast dynamics in complex matter

123   0   0.0 ( 0 )
 نشر من قبل Yanwen Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Split-pulse x-ray photon correlation spectroscopy has been proposed as one of the unique capabilities made possible with the x-ray free electron lasers. It enables characterization of atomic scale structural dynamics that dictates the macroscopic properties of various disordered material systems. Central to the experimental concept are x-ray optics that are capable of splitting individual coherent femtosecond x-ray pulse into two distinct pulses, introduce an adjustable time delay between them, and then recombine the two pulses at the sample position such that they generate two coherent scattering patterns in rapid succession. Recent developments in such optics showed that, while true amplitude splitting optics at hard x-ray wavelengths remains a technical challenge, wavefront and wavelength splitting are both feasible, able to deliver two micron sized focused beams to the sample with sufficient relative stability. Here, we however show that the conventional approach to speckle visibility spectroscopy using these beam splitting techniques can be problematic, even leading to a decoupling of speckle visibility and material dynamics. In response, we discuss the details of the experimental approaches and data analysis protocols for addressing issues caused by subtle beam dissimilarities for both wavefront and wavelength splitting setups. We also show that in some scattering geometries, the Q-space mismatch can be resolved by using two beams of slightly different incidence angle and slightly different wavelengths at the same time. Instead of measuring the visibility of weak speckle patterns, the time correlation in sample structure is encoded in the side band of the spatial autocorrelation of the summed speckle patterns, and can be retrieved straightforwardly from the experimental data. We demonstrate this with a numerical simulation.



قيم البحث

اقرأ أيضاً

With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.
Experiments of time-resolved x-ray magnetic circular dichroism (Tr-XMCD) and resonant x-ray scattering at a beamline BL07LSU in SPring-8 with a time-resolution of under 50 ps are presented. A micro-channel plate is utilized for the Tr-XMCD measuremen ts at nearly normal incidence both in the partial electron and total fluorescence yield (PEY and TFY) modes at the L2,3 absorption edges of the 3d transition-metals in the soft x-ray region. The ultrafast photo-induced demagnetization within 50 ps is observed on the dynamics of a magnetic material of FePt thin film, having a distinct threshold of the photon density. The spectrum in the PEY mode is less-distorted both at the L2,3 edges compared with that in the TFY mode and has the potential to apply the sum rule analysis for XMCD spectra in pump-probed experiments.
A broad range of scientific and industrial disciplines require precise optical measurements at very low light levels. Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments. By using relatively thic k films of NbTiN (8-11,nm) and improving the pattern fidelity of the nano-structure of the superconducting nanowire single-photon detectors (SNSPD), we fabricated devices demonstrating superior performance over all previously reported detectors in the combination of efficiency and time resolution. Our findings prove that small variations in the nanowire width, in the order of a few nanometers, can lead to a significant penalty on their temporal response. Addressing these issues, we consistently achieved high time resolution (best device 7.7,ps, other devices $sim$10-16,ps) simultaneously with high system detection efficiencies ($80-90%$) in the wavelength range of 780-1000,nm, as well as in the telecom bands (1310-1550,nm). The use of thicker films allowed us to fabricate large-area multi-pixel devices with homogeneous pixel performance. We first fabricated and characterized a $100times100, mu m^2$ 16-pixel detector and showed there was little variation among individual pixels. Additionally, to showcase the power of our platform, we fabricated and characterized 4-pixel multimode fiber-coupled detectors and carried out photon correlation experiments on a nanowire quantum dot resulting in $g^2(0)$ values lower than 0.04. The multi-pixel detectors alleviate the need for beamsplitters and can be used for higher order correlations with promising prospects not only in the field of quantum optics, but also in bio-imaging applications, such as fluorescence microscopy and positron emission tomography.
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively n arrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
138 - B. Ruta , Y. Chushkin , G. Monaco 2012
We use X-Ray Photon Correlation Spectroscopy to investigate the structural relaxation process in a metallic glass on the atomic length scale. We report evidence for a dynamical crossover between the supercooled liquid phase and the metastable glassy state, suggesting different origins of the relaxation process across the transition. Furthermore, using different cooling rates we observe a complex hierarchy of dynamic processes characterized by distinct aging regimes. Strong analogies with the aging dynamics of soft glassy materials, such as gels and concentrated colloidal suspensions, point at stress relaxation as a universal mechanism driving the relaxation dynamics of out-of-equilibrium systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا