ﻻ يوجد ملخص باللغة العربية
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
X-ray free-electron lasers (XFELs) have been widely used for applications such as X-ray crystallography and magnetic spin probes because of their unprecedented performance. Recently, time-resolved X-ray magnetic circular dichroism (XMCD) with ultrafa
Resonant elastic X-ray scattering has been widely employed for exploring complex electronic ordering phenomena, like charge, spin, and orbital order, in particular in strongly correlated electronic systems. In addition, recent developments of pump-pr
The fluctuations of the longitudinal coherence length expected from the worlds first hard X-ray Free Electron Laser, the Linac Coherent Light Source, are investigated. We analyze, on a shot-to-shot basis, series of power spectra generated from 1D-FEL
We demonstrate X-ray phase contrast microscopy performed at the European X-ray Free-Electron Laser sampled at 1.128 MHz rate. We have applied this method to image stochastic processes induced by an optical laser incident on water-filled capillaries w
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a