ترغب بنشر مسار تعليمي؟ اضغط هنا

A hydrodynamical study of outflows in starburst galaxies with different driving mechanisms

96   0   0.0 ( 0 )
 نشر من قبل Bei Ping Brian Yu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Outflows from starburst galaxies can be driven by thermal pressure, radiation and cosmic rays. We present an analytic phenomenological model that accounts for these contributions simultaneously to investigate their effects on the hydrodynamical properties of outflows. We assess the impact of energy injection, wind opacity, magnetic field strength and the mass of the host galaxy on flow velocity, temperature, density and pressure profiles. For an M82-like wind, a thermally-dominated driving mechanism is found to deliver the fastest and hottest wind. Radiation-driven winds in typical starburst-galaxy configurations are unable to attain the higher flow velocities and temperatures associated with thermal and cosmic ray-driven systems, leading to higher wind densities which would be more susceptible to cooling and fragmentation at lower altitudes. High opacity winds are more sensitive to radiative driving, but terminal flow velocities are still lower than those achieved by other driving mechanisms at realistic opacities. We demonstrate that variations in the outflow magnetic field can influence its coupling with cosmic rays, where stronger fields enable greater streaming but less driving near the base of the flow, instead with cosmic rays redirecting their driving impact to higher altitudes. The gravitational potential is less important in M82-like wind configurations, and substantial variations in the flow profiles only emerge at high altitude in massive haloes. This model offers a more generalised approach to examine the large scale hydrodynamical properties for a wide variety of starburst galaxies.



قيم البحث

اقرأ أيضاً

We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS , MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean $rm Sigma_{SFR} sim 3000 ,M_{odot} yr^{-1} kpc^{-2}$) and powerful galactic outflows (maximum speeds v$_{98} sim$ 1000-3000 km s$^{-1}$). Our unique data set includes an ensemble of both emission [OII]$lambdalambda$3726,3729, H$beta$, [OIII]$lambdalambda$4959,5007, H$alpha$, [NII]$lambdalambda$6548,6583, and [SII]$lambdalambda$6716,6731) and absorption MgII$lambdalambda$2796,2803, and FeII$lambda$2586) lines that allow us to investigate the kinematics of the cool gas phase (T$sim$10$^4$ K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n$_e sim$ 530 cm$^{-3}$), high metallicity (solar or super-solar), and, on average, high ionization parameters. We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [SII] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.
73 - D. Lutz , E. Sturm , A. Janssen 2019
We report new detections and limits from a NOEMA and ALMA CO(1-0) search for molecular outflows in 13 local galaxies with high FIR surface brightness, and combine with results from the literature. CO line ratios and outflow structure provide some con straints on the conversion from observables to quantities such as molecular mass outflow rates. Ratios between outflow emission in higher J CO transitions and in CO(1-0) typically are consistent with excitation Ri1<~1. For IRAS 13120-5453, however, R31=2.10 indicates optically thin CO in the outflow. Like much of the outflow literature, we use alpha(CO) = 0.8, and we present arguments for using C=1 in deriving molecular mass outflow rates Mdot = C*M*v/R. We compare the two main methods for molecular outflow detection: CO mm interferometry and Herschel OH spectroscopy. For 26 sources studied with both methods, we find 80% agreement in detecting vout>~150km/s outflows, and non-matches can be plausibly ascribed to outflow geometry and SNR. For 12 bright ULIRGs with detailed OH-based outflow modeling, CO outflows are detected in all but one. Outflow masses, velocities, and sizes for these 11 sources agree well between the two methods, and modest remaining differences may relate to the different but overlapping regions sampled by CO emission and OH absorption. Outflow properties correlate better with AGN luminosity and with bolometric luminosity than with FIR surface brightness. The most massive outflows are found for systems with current AGN activity, but significant outflows in non-AGN systems must relate to star formation or to AGN activity in the recent past. We report scaling relations for the increase of outflow mass, rate, momentum rate, and kinetic power with bolometric luminosity. Short ~10^6yr flow times and some sources with resolved multiple outflow episodes support a role of intermittent driving, likely by AGN. (abridged)
142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically c onfirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.
We test cosmological hydrodynamical simulations of galaxy formation regarding the properties of the Blue Cloud (BC), Green Valley (GV) and Red Sequence (RS), as measured on the 4000$small{ mathring {mathrm A}}$ break strength vs stellar mass plane at $z=0.1$. We analyse the RefL0100N1504 run of EAGLE and the TNG100 run of IllustrisTNG project, by comparing them with the Sloan Digital Sky Survey, while taking into account selection bias. Our analysis focuses on the GV, within stellar mass $log,mathrm{M_star/M_{odot}} simeq 10-11$, selected from the bimodal distribution of galaxies on the D$_n$(4000) vs stellar mass plane, following Angthopo et al. methodology. Both simulations match the fraction of AGN in the green-valley. However, they over-produce quiescent GV galaxies with respect to observations, with IllustrisTNG yielding a higher fraction of quiescent GV galaxies than EAGLE. In both, GV galaxies have older luminosity-weighted ages with respect to the SDSS, while a better match is found for mass-weighted ages. We find EAGLE GV galaxies quench their star formation early, but undergo later episodes of star formation, matching observations. In contrast, IllustrisTNG GV galaxies have a more extended SFH, and quench more effectively at later cosmic times, producing the excess of quenched galaxies in GV compared with SDSS, based on the 4000$small{ mathring {mathrm A}}$ break strength. These results suggest the AGN feedback subgrid physics, more specifically, the threshold halo mass for black hole input and the black hole seed mass, could be the primary cause of the over-production of quiescent galaxies found with respect to the observational constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا