ﻻ يوجد ملخص باللغة العربية
We use classical molecular dynamics (MD) simulations to investigate the mechanical properties of pre-cracked, nano-porous single layer MoS2 (SLMoS2) and the effect of interactions between cracks and pores. We found that the failure of pre-cracked and nano-porous SLMoS2 is dominated by brittle type fracture. Bonds in armchair direction show a stronger resistance to crack propagation compared to the zigzag direction. We compared the brittle failure of Griffith prediction with the MD fracture strength and toughness and found substantial differences that limit the applicability of Griffith criterion for SLMoS2 in case of nano-cracks and pores. Next, we demonstrate that the mechanical properties of pre-cracked SLMoS2 can be enhanced via symmetrically placed pores and auxiliary cracks around a central crack and position of such arrangements can be optimized for maximum enhancement of strengths. Such a study would help towards strain engineering based advanced designing of SLMoS2 and other similar Transition Metal Dichalcogenides.
Molecular dynamics simulations of crack propagation are performed for two extreme cases of complex metallic alloys (CMAs): In a model quasicrystal the structure is determined by clusters of atoms, whereas the model C15 Laves phase is a simple periodi
The orthorhombic boride crystal family XYB$_{14}$, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this comp
We present a photoluminescence study of freestanding and Si/SiO2 supported single- and few-layer MoS2. The single-layer exciton peak (A) is only observed in freestanding MoS2. The photoluminescence of supported single-layer MoS2 is instead originatin
We present a stochastic modeling framework for atomistic propagation of a Mode I surface crack, with atoms interacting according to the Lennard-Jones interatomic potential at zero temperature. Specifically, we invoke the Cauchy-Born rule and the maxi
The electron-phonon coupling strength in the spin-split valence band maximum of single-layer MoS$_2$ is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron-phonon coupling p