ﻻ يوجد ملخص باللغة العربية
In this paper, we model Density Evolution (DE) using Recurrent Neural Networks (RNNs) with the aim of designing capacity-approaching Irregular Low-Density Parity-Check (LDPC) codes for binary erasure channels. In particular, we present a method for determining the coefficients of the degree distributions, characterizing the structure of an LDPC code. We refer to our RNN architecture as Neural Density Evolution (NDE) and determine the weights of the RNN that correspond to optimal designs by minimizing a loss function that enforces the properties of asymptotically optimal design, as well as the desired structural characteristics of the code. This renders the LDPC design process highly configurable, as constraints can be added to meet applications requirements by means of modifying the loss function. In order to train the RNN, we generate data corresponding to the expected channel noise. We analyze the complexity and optimality of NDE theoretically, and compare it with traditional design methods that employ differential evolution. Simulations illustrate that NDE improves upon differential evolution both in terms of asymptotic performance and complexity. Although we focus on asymptotic settings, we evaluate designs found by NDE for finite codeword lengths and observe that performance remains satisfactory across a variety of channels.
The concept and existence of sphere-bound-achieving and capacity-achieving lattices has been explained on AWGN channels by Forney. LDPC lattices, introduced by Sadeghi, perform very well under iterative decoding algorithm. In this work, we focus on a
Consider transmission over a binary additive white gaussian noise channel using a fixed low-density parity check code. We consider the posterior measure over the code bits and the corresponding correlation between two codebits, averaged over the nois
We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasi-cyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Shor-Steane (CSS)
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process wil
We consider the effect of log-likelihood ratio saturation on belief propagation decoder low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on thre