ﻻ يوجد ملخص باللغة العربية
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process will still require to complete, or to classify process instances to different classes based only on the activities that have occurred in the process instance thus far. Recurrent neural networks and its subclasses, such as Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), have been demonstrated to be able to learn relevant temporal features for subsequent classification tasks. In this paper we apply recurrent neural networks to classifying process instances. The proposed model is trained in a supervised fashion using labeled process instances extracted from event log traces. This is the first time we know of GRU having been used in classifying business process instances. Our main experimental results shows that GRU outperforms LSTM remarkably in training time while giving almost identical accuracies to LSTM models. Additional contributions of our paper are improving the classification model training time by filtering infrequent activities, which is a technique commonly used, e.g., in Natural Language Processing (NLP).
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember.
Recurrent neural networks (RNNs) have been extraordinarily successful for prediction with sequential data. To tackle highly variable and noisy real-world data, we introduce Particle Filter Recurrent Neural Networks (PF-RNNs), a new RNN family that ex
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories.
With the rising number of interconnected devices and sensors, modeling distributed sensor networks is of increasing interest. Recurrent neural networks (RNN) are considered particularly well suited for modeling sensory and streaming data. When predic
Recurrent neural networks (RNNs) such as Long Short Term Memory (LSTM) networks have become popular in a variety of applications such as image processing, data classification, speech recognition, and as controllers in autonomous systems. In practical