ترغب بنشر مسار تعليمي؟ اضغط هنا

Classifying Process Instances Using Recurrent Neural Networks

66   0   0.0 ( 0 )
 نشر من قبل Markku Hinkka
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process will still require to complete, or to classify process instances to different classes based only on the activities that have occurred in the process instance thus far. Recurrent neural networks and its subclasses, such as Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), have been demonstrated to be able to learn relevant temporal features for subsequent classification tasks. In this paper we apply recurrent neural networks to classifying process instances. The proposed model is trained in a supervised fashion using labeled process instances extracted from event log traces. This is the first time we know of GRU having been used in classifying business process instances. Our main experimental results shows that GRU outperforms LSTM remarkably in training time while giving almost identical accuracies to LSTM models. Additional contributions of our paper are improving the classification model training time by filtering infrequent activities, which is a technique commonly used, e.g., in Natural Language Processing (NLP).



قيم البحث

اقرأ أيضاً

Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
152 - Xiao Ma , Peter Karkus , David Hsu 2019
Recurrent neural networks (RNNs) have been extraordinarily successful for prediction with sequential data. To tackle highly variable and noisy real-world data, we introduce Particle Filter Recurrent Neural Networks (PF-RNNs), a new RNN family that ex plicitly models uncertainty in its internal structure: while an RNN relies on a long, deterministic latent state vector, a PF-RNN maintains a latent state distribution, approximated as a set of particles. For effective learning, we provide a fully differentiable particle filter algorithm that updates the PF-RNN latent state distribution according to the Bayes rule. Experiments demonstrate that the proposed PF-RNNs outperform the corresponding standard gated RNNs on a synthetic robot localization dataset and 10 real-world sequence prediction datasets for text classification, stock price prediction, etc.
415 - Qi She , Anqi Wu 2019
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
With the rising number of interconnected devices and sensors, modeling distributed sensor networks is of increasing interest. Recurrent neural networks (RNN) are considered particularly well suited for modeling sensory and streaming data. When predic ting future behavior, incorporating information from neighboring sensor stations is often beneficial. We propose a new RNN based architecture for context specific information fusion across multiple spatially distributed sensor stations. Hereby, latent representations of multiple local models, each modeling one sensor station, are jointed and weighted, according to their importance for the prediction. The particular importance is assessed depending on the current context using a separate attention function. We demonstrate the effectiveness of our model on three different real-world sensor network datasets.
Recurrent neural networks (RNNs) such as Long Short Term Memory (LSTM) networks have become popular in a variety of applications such as image processing, data classification, speech recognition, and as controllers in autonomous systems. In practical settings, there is often a need to deploy such RNNs on resource-constrained platforms such as mobile phones or embedded devices. As the memory footprint and energy consumption of such components become a bottleneck, there is interest in compressing and optimizing such networks using a range of heuristic techniques. However, these techniques do not guarantee the safety of the optimized network, e.g., against adversarial inputs, or equivalence of the optimized and original networks. To address this problem, we propose DIFFRNN, the first differential verification method for RNNs to certify the equivalence of two structurally similar neural networks. Existing work on differential verification for ReLUbased feed-forward neural networks does not apply to RNNs where nonlinear activation functions such as Sigmoid and Tanh cannot be avoided. RNNs also pose unique challenges such as handling sequential inputs, complex feedback structures, and interactions between the gates and states. In DIFFRNN, we overcome these challenges by bounding nonlinear activation functions with linear constraints and then solving constrained optimization problems to compute tight bounding boxes on nonlinear surfaces in a high-dimensional space. The soundness of these bounding boxes is then proved using the dReal SMT solver. We demonstrate the practical efficacy of our technique on a variety of benchmarks and show that DIFFRNN outperforms state-of-the-art RNN verification tools such as POPQORN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا