ترغب بنشر مسار تعليمي؟ اضغط هنا

Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing

240   0   0.0 ( 0 )
 نشر من قبل Inioluwa Deborah Raji
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Rising concern for the societal implications of artificial intelligence systems has inspired a wave of academic and journalistic literature in which deployed systems are audited for harm by investigators from outside the organizations deploying the algorithms. However, it remains challenging for practitioners to identify the harmful repercussions of their own systems prior to deployment, and, once deployed, emergent issues can become difficult or impossible to trace back to their source. In this paper, we introduce a framework for algorithmic auditing that supports artificial intelligence system development end-to-end, to be applied throughout the internal organization development lifecycle. Each stage of the audit yields a set of documents that together form an overall audit report, drawing on an organizations values or principles to assess the fit of decisions made throughout the process. The proposed auditing framework is intended to contribute to closing the accountability gap in the development and deployment of large-scale artificial intelligence systems by embedding a robust process to ensure audit integrity.



قيم البحث

اقرأ أيضاً

AI researchers employ not only the scientific method, but also methodology from mathematics and engineering. However, the use of the scientific method - specifically hypothesis testing - in AI is typically conducted in service of engineering objectiv es. Growing interest in topics such as fairness and algorithmic bias show that engineering-focused questions only comprise a subset of the important questions about AI systems. This results in the AI Knowledge Gap: the number of unique AI systems grows faster than the number of studies that characterize these systems behavior. To close this gap, we argue that the study of AI could benefit from the greater inclusion of researchers who are well positioned to formulate and test hypotheses about the behavior of AI systems. We examine the barriers preventing social and behavioral scientists from conducting such studies. Our diagnosis suggests that accelerating the scientific study of AI systems requires new incentives for academia and industry, mediated by new tools and institutions. To address these needs, we propose a two-sided marketplace called TuringBox. On one side, AI contributors upload existing and novel algorithms to be studied scientifically by others. On the other side, AI examiners develop and post machine intelligence tasks designed to evaluate and characterize algorithmic behavior. We discuss this markets potential to democratize the scientific study of AI behavior, and thus narrow the AI Knowledge Gap.
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
366 - Jie Xu , Tao Chen , Lara Zlokapa 2021
The current dominant paradigm for robotic manipulation involves two separate stages: manipulator design and control. Because the robots morphology and how it can be controlled are intimately linked, joint optimization of design and control can signif icantly improve performance. Existing methods for co-optimization are limited and fail to explore a rich space of designs. The primary reason is the trade-off between the complexity of designs that is necessary for contact-rich tasks against the practical constraints of manufacturing, optimization, contact handling, etc. We overcome several of these challenges by building an end-to-end differentiable framework for contact-aware robot design. The two key components of this framework are: a novel deformation-based parameterization that allows for the design of articulated rigid robots with arbitrary, complex geometry, and a differentiable rigid body simulator that can handle contact-rich scenarios and computes analytical gradients for a full spectrum of kinematic and dynamic parameters. On multiple manipulation tasks, our framework outperforms existing methods that either only optimize for control or for design using alternate representations or co-optimize using gradient-free methods.
Point of interest (POI) data serves as a valuable source of semantic information for places of interest and has many geospatial applications in real estate, transportation, and urban planning. With the availability of different data sources, POI conf lation serves as a valuable technique for enriching data quality and coverage by merging the POI data from multiple sources. This study proposes a novel end-to-end POI conflation framework consisting of six steps, starting with data procurement, schema standardisation, taxonomy mapping, POI matching, POI unification, and data verification. The feasibility of the proposed framework was demonstrated in a case study conducted in the eastern region of Singapore, where the POI data from five data sources was conflated to form a unified POI dataset. Based on the evaluation conducted, the resulting unified dataset was found to be more comprehensive and complete than any of the five POI data sources alone. Furthermore, the proposed approach for identifying POI matches between different data sources outperformed all baseline approaches with a matching accuracy of 97.6% with an average run time below 3 minutes when matching over 12,000 POIs to result in 8,699 unique POIs, thereby demonstrating the frameworks scalability for large scale implementation in dense urban contexts.
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its wide and deep components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its deep component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا