ﻻ يوجد ملخص باللغة العربية
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature
Hyperspectral image (HSI) consists of hundreds of continuous narrow bands with high spectral correlation, which would lead to the so-called Hughes phenomenon and the high computational cost in processing. Band selection has been proven effective in a
E-commerce sponsored search contributes an important part of revenue for the e-commerce company. In consideration of effectiveness and efficiency, a large-scale sponsored search system commonly adopts a multi-stage architecture. We name these stages
Routing newly posted questions (a.k.a cold questions) to potential answerers with the suitable expertise in Community Question Answering sites (CQAs) is an important and challenging task. The existing methods either focus only on embedding the graph
Subword units are commonly used for end-to-end automatic speech recognition (ASR), while a fully acoustic-oriented subword modeling approach is somewhat missing. We propose an acoustic data-driven subword modeling (ADSM) approach that adapts the adva