ﻻ يوجد ملخص باللغة العربية
The Gaussian mixture distribution is important in various statistical problems. In particular it is used in the Gaussian-sum filter and smoother for linear state-space model with non-Gaussian noise inputs. However, for this method to be practical, an efficient method of reducing the number of Gaussian components is necessary. In this paper, we show that a closed form expression of Pearson chi^2-divergence can be obtained and it can apply to the determination of the pair of two Gaussian components in sequential reduction of Gaussian components. By numerical examples for one dimensional and two dimensional distribution models, it will be shown that in most cases the proposed criterion performed almost equally as the Kullback-Libler divergence, for which computationally costly numerical integration is necessary. Application to Gaussian-sum filtering and smoothing is also shown.
Heterogeneity of sentences exists in sequence to sequence tasks such as machine translation. Sentences with largely varied meanings or grammatical structures may increase the difficulty of convergence while training the network. In this paper, we int
A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our pr
We propose the Gaussian attention model for content-based neural memory access. With the proposed attention model, a neural network has the additional degree of freedom to control the focus of its attention from a laser sharp attention to a broad att
Sparse inverse covariance estimation (i.e., edge de-tection) is an important research problem in recent years, wherethe goal is to discover the direct connections between a set ofnodes in a networked system based upon the observed nodeactivities. Exi
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod