ترغب بنشر مسار تعليمي؟ اضغط هنا

Pearson chi^2-divergence Approach to Gaussian Mixture Reduction and its Application to Gaussian-sum Filter and Smoother

88   0   0.0 ( 0 )
 نشر من قبل Genshiro Kitagawa
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Genshiro Kitagawa




اسأل ChatGPT حول البحث

The Gaussian mixture distribution is important in various statistical problems. In particular it is used in the Gaussian-sum filter and smoother for linear state-space model with non-Gaussian noise inputs. However, for this method to be practical, an efficient method of reducing the number of Gaussian components is necessary. In this paper, we show that a closed form expression of Pearson chi^2-divergence can be obtained and it can apply to the determination of the pair of two Gaussian components in sequential reduction of Gaussian components. By numerical examples for one dimensional and two dimensional distribution models, it will be shown that in most cases the proposed criterion performed almost equally as the Kullback-Libler divergence, for which computationally costly numerical integration is necessary. Application to Gaussian-sum filtering and smoothing is also shown.



قيم البحث

اقرأ أيضاً

92 - Yunhao Yang , Zhaokun Xue 2021
Heterogeneity of sentences exists in sequence to sequence tasks such as machine translation. Sentences with largely varied meanings or grammatical structures may increase the difficulty of convergence while training the network. In this paper, we int roduce a model to resolve the heterogeneity in the sequence to sequence task. The Multi-filter Gaussian Mixture Autoencoder (MGMAE) utilizes an autoencoder to learn the representations of the inputs. The representations are the outputs from the encoder, lying in the latent space whose dimension is the hidden dimension of the encoder. The representations of training data in the latent space are used to train Gaussian mixtures. The latent space representations are divided into several mixtures of Gaussian distributions. A filter (decoder) is tuned to fit the data in one of the Gaussian distributions specifically. Each Gaussian is corresponding to one filter so that the filter is responsible for the heterogeneity within this Gaussian. Thus the heterogeneity of the training data can be resolved. Comparative experiments are conducted on the Geo-query dataset and English-French translation. Our experiments show that compares to the traditional encoder-decoder model, this network achieves better performance on sequence to sequence tasks such as machine translation and question answering.
A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our pr oposed class is robust and does not present some computational issues experienced by the gamma model. By assuming a piecewise-exponential baseline hazard function, which gives a semiparametric flavour for our frailty class, we propose an EM-algorithm for estimating the model parameters and provide an explicit expression for the information matrix. Simulated results are addressed to check the finite sample behavior of the EM-estimators and also to study the performance of the GIG models under misspecification. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.
We propose the Gaussian attention model for content-based neural memory access. With the proposed attention model, a neural network has the additional degree of freedom to control the focus of its attention from a laser sharp attention to a broad att ention. It is applicable whenever we can assume that the distance in the latent space reflects some notion of semantics. We use the proposed attention model as a scoring function for the embedding of a knowledge base into a continuous vector space and then train a model that performs question answering about the entities in the knowledge base. The proposed attention model can handle both the propagation of uncertainty when following a series of relations and also the conjunction of conditions in a natural way. On a dataset of soccer players who participated in the FIFA World Cup 2014, we demonstrate that our model can handle both path queries and conjunctive queries well.
Sparse inverse covariance estimation (i.e., edge de-tection) is an important research problem in recent years, wherethe goal is to discover the direct connections between a set ofnodes in a networked system based upon the observed nodeactivities. Exi sting works mainly focus on unimodal distributions,where it is usually assumed that the observed activities aregenerated from asingleGaussian distribution (i.e., one graph).However, this assumption is too strong for many real-worldapplications. In many real-world applications (e.g., brain net-works), the node activities usually exhibit much more complexpatterns that are difficult to be captured by one single Gaussiandistribution. In this work, we are inspired by Latent DirichletAllocation (LDA) [4] and consider modeling the edge detectionproblem as estimating a mixture ofmultipleGaussian distribu-tions, where each corresponds to a separate sub-network. Toaddress this problem, we propose a novel model called GaussianMixture Graphical Lasso (MGL). It learns the proportionsof signals generated by each mixture component and theirparameters iteratively via an EM framework. To obtain moreinterpretable networks, MGL imposes a special regularization,called Mutual Exclusivity Regularization (MER), to minimize theoverlap between different sub-networks. MER also addresses thecommon issues in read-world data sets,i.e., noisy observationsand small sample size. Through the extensive experiments onsynthetic and real brain data sets, the results demonstrate thatMGL can effectively discover multiple connectivity structuresfrom the observed node activities
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod el is utilized to capture the dependence structure of $F_{true}$. As a result, a Bayesian multivariate normality test is developed by combining the relative belief ratio and the Energy distance. Several interesting theoretical results of the approach are derived. Finally, through several simulated examples and a real data set, the proposed approach reveals excellent performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا