ﻻ يوجد ملخص باللغة العربية
We propose the Gaussian attention model for content-based neural memory access. With the proposed attention model, a neural network has the additional degree of freedom to control the focus of its attention from a laser sharp attention to a broad attention. It is applicable whenever we can assume that the distance in the latent space reflects some notion of semantics. We use the proposed attention model as a scoring function for the embedding of a knowledge base into a continuous vector space and then train a model that performs question answering about the entities in the knowledge base. The proposed attention model can handle both the propagation of uncertainty when following a series of relations and also the conjunction of conditions in a natural way. On a dataset of soccer players who participated in the FIFA World Cup 2014, we demonstrate that our model can handle both path queries and conjunctive queries well.
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurr
Knowledge base question answering (KBQA)is an important task in Natural Language Processing. Existing approaches face significant challenges including complex question understanding, necessity for reasoning, and lack of large end-to-end training data
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Early studies mainly focused on answering simple questions over KBs and achieved great success. However, their performance on complex questions is still fa
Question answering is an important task for autonomous agents and virtual assistants alike and was shown to support the disabled in efficiently navigating an overwhelming environment. Many existing methods focus on observation-based questions, ignori
ASCENT is a fully automated methodology for extracting and consolidating commonsense assertions from web contents (Nguyen et al., WWW 2021). It advances traditional triple-based commonsense knowledge representation by capturing semantic facets like l