ﻻ يوجد ملخص باللغة العربية
Polycrystalline sample of superconducting ThIr$_{3}$ was obtained by arc-melting Th and Ir metals. Powder x-ray diffraction revealed that the compound crystalizes in a rhombohedral crystal structure (R-3m, s.g. no. 166) with the lattice parameters: a = 5.3394(1) $r{A}$ and c = 26.4228(8) $r{A}$. Normal and superconducting states were studied by magnetic susceptibility, electrical resistivity and heat capacity measurements. The results showed that ThIr$_{3}$ is a type II superconductor (Ginzburg-Landau parameter $kappa$ = 38) with the critical temperature T$_{c}$ = 4.41 K. The heat capacity data yielded the Sommerfeld coefficient $gamma$ = 17.6 mJ mol$^{-1}$ K$^{-2}$ and the Debye temperature $Theta_{D}$ = 169 K. The ratio $Delta$C / ($gamma$ T$_{c}$) = 1.6, where $Delta$C stands for the specific heat jump at T$_{c}$, and the electron-phonon coupling constant $lambda_{e-p}$ = 0.74 suggest that ThIr$_{3}$ is a moderate-strength superconductor. The experimental studies were supplemented by band structure calculations, which indicated that the superconductivity in ThIr$_{3}$ is governed mainly by 5d states of iridium. The significantly smaller band-structure value of Sommerfeld coefficient as well as the experimentally observed quadratic temperature dependence of resistivity and enhanced magnetic susceptibility suggest presence of electronic interactions in the system, which compete with superconductivity.
We have studied the superconducting properties of LaIr$_3$ with a rhombohedral structure using magnetization, heat capacity, and muon-spin rotation/relaxation ($mu$SR) measurements. The zero-field cooled and field cooled susceptibility measurements e
The electronic properties of the heavy metal superconductor LaIr3 are reported. The estimated superconducting parameters obtained from physical properties measurements indicate that LaIr3 is a BCS-type superconductor. Electronic band structure calcul
The effects of lithium absorption on the crystal structure and electronic properties of IrSi3, a binary silicide with a noncentrosymmetric crystal structure, were studied. X-ray and neutron diffraction experiments revealed that hexagonal IrSi3 (space
Here we report the synthesis and discovery of superconductivity in a novel ternary iridium-arsenide compound BaIr2As2. The polycrystalline BaIr2As2 sample was synthesized by a high temperature and high pressure method. Crystal structural analysis ind
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin