ﻻ يوجد ملخص باللغة العربية
The effects of lithium absorption on the crystal structure and electronic properties of IrSi3, a binary silicide with a noncentrosymmetric crystal structure, were studied. X-ray and neutron diffraction experiments revealed that hexagonal IrSi3 (space group P6_3mc) transforms into trigonal Li2IrSi3 (space group P31c) upon lithium absorption. The structure of Li2IrSi3 is found to consist of a planar kagome network of silicon atoms with Li and Ir spaced at unequal distances between the kagome layers, resulting in a polar structure along the c-axis. Li2IrSi3 exhibited type-II superconductivity with a transition temperature Tc of 3.8 K, displaying a structure type that no previous superconductors have been reported to have.
Here we report the synthesis and discovery of superconductivity in a novel ternary iridium-arsenide compound BaIr2As2. The polycrystalline BaIr2As2 sample was synthesized by a high temperature and high pressure method. Crystal structural analysis ind
We report measurements of London penetration depth $lambda(T)$ for the noncentrosymmetric superconductor BiPd by using a tunnel diode oscillator. Pronounced anisotropic behavior is observed in the low-temperature penetration depth; the in-plane penet
Single crystals of NbGe$_{2}$ which crystallize in a noncentrosymmetric hexagonal structure with chirality are synthesized and their superconductivity is investigated. Type-I superconductivity is confirmed by dc magnetization, field-induced second-to
We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were id
Polycrystalline sample of superconducting ThIr$_{3}$ was obtained by arc-melting Th and Ir metals. Powder x-ray diffraction revealed that the compound crystalizes in a rhombohedral crystal structure (R-3m, s.g. no. 166) with the lattice parameters: a