ﻻ يوجد ملخص باللغة العربية
Let $psi : Gto GL(V)$ and $varphi :G to GL (W)$ be representations of finite group $G$. A linear map $T: Vto W$ is called a morphism from $psi$ to $varphi$ if it satisfys $Tpsi_g= varphi_g T$ for each $gin G$ and let $mathrm{Hom}_G (psi ,varphi)$ denote the set of all morphisms. In this paper, we make full stufy of the subspace $mathrm{Hom}_G(psi, varphi)$. As byproducts, we include the proof of the first orthogonality relation and Schurs orthogonality relation.
We give an explicit construction of test vectors for $T$-equivariant linear functionals on representations $Pi$ of $GL_2$ of a $p$-adic field $F$, where $T$ is a non-split torus. Of particular interest is the case when both the representations are ra
Let $K/F$ be a quadratic extension of $p$-adic fields, $sigma$ the nontrivial element of the Galois group of $K$ over $F$, and $pi$ a quasi-square-integrable representation of $GL(n,K)$. Denoting by $pi^{vee}$ the smooth contragredient of $pi$, and b
This paper explores various homological regularity phenomena (in the sense of Auslander) in category $mathcal{O}$ and its several variations and generalizations. Additionally, we address the problem of determining projective dimension of twisted and shuffled projective and tilting modules.
Let $mathcal{O}$ be a Richardson nilpotent orbit in a simple Lie algebra $mathfrak{g}$ over $mathbb C$, induced from a Levi subalgebra whose simple roots are orthogonal short roots. The main result of the paper is a description of a minimal set of ge
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate gro