ﻻ يوجد ملخص باللغة العربية
Let $mathcal{O}$ be a Richardson nilpotent orbit in a simple Lie algebra $mathfrak{g}$ over $mathbb C$, induced from a Levi subalgebra whose simple roots are orthogonal short roots. The main result of the paper is a description of a minimal set of generators of the ideal defining $overline{ mathcal{O}}$ in $S mathfrak{g}^*$. In such cases, the ideal is generated by bases of at most two copies of the representation whose highest weight is the dominant short root, along with some fundamental invariants. This extends Broers result for the subregular nilpotent orbit. Along the way we give another proof of Broers result that $overline{ mathcal{O}}$ is normal. We also prove a result connecting a property of invariants related to flat bases to the question of when one copy of the adjoint representation is in the ideal in $S mathfrak{g}^*$ generated by another copy of the adjoint representation and the fundamental invariants.
We determine which nilpotent orbits in $E_6$ have normal closure and which do not. We also verify a conjecture about small representations in rings of functions on nilpotent orbit covers for type $E_6$.
For the classical groups, Kraft and Procesi have resolved the question of which nilpotent orbits have closures which are normal and which are not, with the exception of the very even orbits in $D_{2l}$ which have partition of the form $(a^{2k}, b^2)$
According to a well-known theorem of Brieskorn and Slodowy, the intersection of the nilpotent cone of a simple Lie algebra with a transverse slice to the subregular nilpotent orbit is a simple surface singularity. At the opposite extremity of the nil
Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson d
We study in this paper the jet schemes of the closure of nilpotent orbits in a finite-dimensional complex reductive Lie algebra. For the nilpotent cone, which is the closure of the regular nilpotent orbit, all the jet schemes are irreducible. This wa