ﻻ يوجد ملخص باللغة العربية
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe$_3$. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through ${T_mathrm{C}}$. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te ${5p}$ and the Cr ${e_g}$ orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr ${t_{2g}}$ states that carry the majority of the spin moment. The ${t_{2g}}$ states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
The spin-driven component of electric polarization in a single crystal of multiferroic BiFeO$_{3}$ was experimentally investigated in pulsed high magnetic fields up to 41 T. Sequential measurements of electric polarization for various magnetic field
The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at
Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI$_3$ and VI$_3$, the magnetic ground state, the band
We report on the spectroscopic observation of a quantized electronic fine structure near the Fermi energy in thin Fe films grown on W(110). The quantum well states are detected down to binding energies of $sim$10 meV by angle-resolved photoelectron s