ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct k-space mapping of the electronic structure in an oxide-oxide interface

437   0   0.0 ( 0 )
 نشر من قبل G\\\"otz Berner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interface between LaAlO3 and SrTiO3 hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k-space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O-vacancies in the SrTiO3. While photovoltage effects in the polar LaAlO3 layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO3 is compensated by surface O-vacancies serving also as charge reservoir.



قيم البحث

اقرأ أيضاً

325 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The misfit oxide, Bi$_{2}$Ba$_{1.3}$K$_{0.6}$Co$_{2.1}$O$_{y}$, made of alternating rocksalt-structured [BiO/BaO] layers and hexagonal CoO$_{2}$ layers, was studied by angle-resolved photoemission spectroscopy. Detailed electronic structure of such a highly strained oxide interfaces is revealed for the first time. We found that under the two incommensurate crystal fields, electrons are confined within individual sides of the interface, and scattered by umklapp scattering of the crystal field from the other side. In addition, the high strain on the rocksalt layer raises its chemical potential and induces large charge transfer to the CoO$_{2}$ layer. Furthermore, a novel interface effects, the interfacial enhancement of electron-phonon interactions, is discovered. Our findings of these electronic properties lay a foundation for designing future functional oxide interfaces.
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions driving novel emergent behavior. This is exemplified in 5d osm ates that host a metal-insulator transition (MIT) driven by magnetic order. Here we consider the most robust case, the 5d perovskite NaOsO3, and reveal a giant coupling between spin and phonon through a frequency shift of {Delta}{omega}=40 cm-1, the largest measured in any material. We identify the dominant octahedral breathing mode and show isosymmetry with spin ordering which induces dynamic charge disproportionation that sheds new light on the MIT. The occurrence of the dramatic spin-phonon-electronic coupling in NaOsO3 is due to a property common to all 5d materials: the large spatial extent of the 5d ion. This allows magnetism to couple to phonons on an unprecedented scale and consequently offers multiple new routes to enhanced coupled phenomena.
Synchrotron X-ray diffraction patterns were measured and analyzed for a polycrystalline sample of the room-temperature ferromagnet Sr3.12Er0.88Co4O10.5 from 300 to 650 K, from which two structural phase transitions were found to occur successively. T he higher-temperature transition at 509 K is driven by ordering of the oxygen vacancies, which is closely related to the metallic state at high temperatures. The lower-temperature transition at 360 K is of first order, at which the ferromagnetic state suddenly appears with exhibiting a jump in magnetization and resistivity. Based on the refined structure, possible spin and orbital models for the magnetic order are proposed.
We present an x-ray absorption study of the dependence of the V oxidation state on the thickness of LaVO$_3$ (LVO) and capping LaAlO$_3$ (LAO) layers in the multilayer structure of LVO sandwiched between LAO. We found that the change of the valence o f V as a function of LAO layer thickness can be qualitatively explained by a transition between electronically reconstructed interfaces and a chemical reconstruction. The change as a function of LVO layer thickness is complicated by the presence of a considerable amount of V$^{4+}$ in the bulk of the thicker LVO layers.
Charge carrier injection performed in Pr0.7Ca0.3MnO3 (PCMO) hetero-structure junctions exhibits stable without electric fields and dramatic changes in both resistances and interface barriers, which are entirely different from behaviors of semiconduct or devices. Disappearance and reversion of interface barriers suggest that the adjustable resistance switching of such hetero-structure oxide devices should associate with motion of charge carriers across interfaces. The results suggested that injected carriers should be still staying in devices and resulted in changes in properties, which guided to a carrier self-trapping and releasing picture in strongly correlated electronic framework. Observations in PCMO and oxygen deficient CeO2 devices show that oxides as functional materials could be used in microelectronics with some novel properties, in which interface is very important.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا