ﻻ يوجد ملخص باللغة العربية
We developed a computational framework for simulating thin fluid flow in narrow interfaces between contacting solids, which is relevant for a range of engineering, biological and geophysical applications. The treatment of this problem requires coupling between fluid and solid mechanics equations, further complicated by contact constraints and potentially complex geometrical features of contacting surfaces. We developed a monolithic finite-element framework for handling mechanical contact, thin incompressible viscous flow and fluid-induced tractions on the surface of the solid, suitable for both one- and two-way coupling approaches. Additionally, we consider the possibility of fluid entrapment in pools delimited by contact patches and its pressurisation following a non-linear compressibility constitutive law. Furthermore, image analysis algorithms were adapted to identify the local status of each interface element within the Newton-Raphson loop. First, an application of the proposed framework for a problem with a model geometry is given, and the robustness is demonstrated by the residual-wise and status-wise convergence. The full capability of the developed two-way coupling framework is demonstrated on a problem of a fluid flow in contact interface between a solid with representative rough surface and a rigid flat. The evolution of the contact pressure, fluid flow pattern and the morphology of trapped fluid zones until the complete sealing of the interface is displayed. Additionally, we demonstrated an almost mesh-independent result of a refined post-processing approach to the real contact-area computation. The developed framework permits not only to study the evolution of effective properties of contact interfaces, but also to highlight the difference between one- and two-way coupling approaches and to quantify the effect of multiple trapped fluid pools on the coupled problem.
This article presents numerical investigations on accuracy and convergence properties of several numerical approaches for simulating steady state flows in heterogeneous aquifers. Finite difference, finite element, discontinuous Galerkin, spectral, an
We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying
A computational fluid dynamics (CFD) simulation framework for predicting complex flows is developed on the Tensor Processing Unit (TPU) platform. The TPU architecture is featured with accelerated performance of dense matrix multiplication, large high
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow pr
Computational models are increasingly used for diagnosis and treatment of cardiovascular disease. To provide a quantitative hemodynamic understanding that can be effectively used in the clinic, it is crucial to quantify the variability in the outputs