ﻻ يوجد ملخص باللغة العربية
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow problems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.
We present a particle method for estimating the curvature of interfaces in volume-of-fluid simulations of multiphase flows. The method is well suited for under-resolved interfaces, and it is shown to be more accurate than the parabolic fitting that i
Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations, since sufficiently large portions of the bath have to be included in the computation to accurately compute
We present a novel computational modeling framework to numerically investigate fluid-structure interaction in viscous fluids using the phase field embedding method. Each rigid body or elastic structure immersed in the incompressible viscous fluid mat
We propose a fast potential splitting Markov Chain Monte Carlo method which costs $O(1)$ time each step for sampling from equilibrium distributions (Gibbs measures) corresponding to particle systems with singular interacting kernels. We decompose the
In this paper, authors focus effort on improving the conventional discrete velocity method (DVM) into a multiscale scheme in finite volume framework for gas flow in all flow regimes. Unlike the typical multiscale kinetic methods unified gas-kinetic s