ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid WENO method with modified ghost fluid method for compressible two-medium flow problems

262   0   0.0 ( 0 )
 نشر من قبل Zhuang Zhao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow problems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.



قيم البحث

اقرأ أيضاً

We present a particle method for estimating the curvature of interfaces in volume-of-fluid simulations of multiphase flows. The method is well suited for under-resolved interfaces, and it is shown to be more accurate than the parabolic fitting that i s employed in such cases. The curvature is computed from the equilibrium positions of particles constrained to circular arcs and attracted to the interface. The proposed particle method is combined with the method of height functions at higher resolutions, and it is shown to outperform the current combinations of height functions and parabolic fitting. The algorithm is conceptually simple and straightforward to implement on new and existing software frameworks for multiphase flow simulations thus enhancing their capabilities in challenging flow problems. We evaluate the proposed hybrid method on a number of two- and three-dimensional benchmark flow problems and illustrate its capabilities on simulations of flows involving bubble coalescence and turbulent multiphase flows.
148 - Weiqi Chu , Xiantao Li 2021
Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations, since sufficiently large portions of the bath have to be included in the computation to accurately compute the Coulomb potential. This article presents a reduced-order approach, by deriving an open quantum model for the reduced density-matrix. To treat the transient dynamics, the problem is placed in a reduced-order framework. The dynamics, described by the Liouville von Neumann equation, is projected to subspaces using a Petrov-Galerkin projection. In order to recover the global electron density profile as a vehicle to compute the Coulomb potential, we propose a domain decomposition approach, where the computational domain also includes segments of the bath that are selected using logarithmic grids. This approach leads to a multi-component self-energy that enters the effective Hamiltonian. We demonstrate the accuracy of the reduced model using a molecular junction built from a Lithium chains.
189 - Qi Hong , Qi Wang 2021
We present a novel computational modeling framework to numerically investigate fluid-structure interaction in viscous fluids using the phase field embedding method. Each rigid body or elastic structure immersed in the incompressible viscous fluid mat rix, grossly referred to as the particle in this paper, is identified by a volume preserving phase field. The motion of the particle is driven by the fluid velocity in the matrix for passive particles or combined with its self-propelling velocity for active particles. The excluded volume effect between a pair of particles or between a particle and the boundary is modeled by a repulsive potential force. The drag exerted to the fluid by a particle is assumed proportional to its velocity. When the particle is rigid, its state is described by a zero velocity gradient tensor within the nonzero phase field that defines its profile and a constraining stress exists therein. While the particle is elastic, a linear constitutive equation for the elastic stress is provided within the particle domain. A hybrid, thermodynamically consistent hydrodynamic model valid in the entire computational domain is then derived for the fluid-particle ensemble using the generalized Onsager principle accounting for both rigid and elastic particles. Structure-preserving numerical algorithms are subsequently developed for the thermodynamically consistent model. Numerical tests in 2D and 3D space are carried out to verify the rate of convergence and numerical examples are given to demonstrate the usefulness of the computational framework for simulating fluid-structure interactions for passive as well as self-propelling active particles in a viscous fluid matrix.
133 - Lei Li , Zhenli Xu , Yue Zhao 2020
We propose a fast potential splitting Markov Chain Monte Carlo method which costs $O(1)$ time each step for sampling from equilibrium distributions (Gibbs measures) corresponding to particle systems with singular interacting kernels. We decompose the interacting potential into two parts, one is of long range but is smooth, and the other one is of short range but may be singular. To displace a particle, we first evolve a selected particle using the stochastic differential equation (SDE) under the smooth part with the idea of random batches, as commonly used in stochastic gradient Langevin dynamics. Then, we use the short range part to do a Metropolis rejection. Different from the classical Langevin dynamics, we only run the SDE dynamics with random batch for a short duration of time so that the cost in the first step is $O(p)$, where $p$ is the batch size. The cost of the rejection step is $O(1)$ since the interaction used is of short range. We justify the proposed random-batch Monte Carlo method, which combines the random batch and splitting strategies, both in theory and with numerical experiments. While giving comparable results for typical examples of the Dyson Brownian motion and Lennard-Jones fluids, our method can save more time when compared to the classical Metropolis-Hastings algorithm.
In this paper, authors focus effort on improving the conventional discrete velocity method (DVM) into a multiscale scheme in finite volume framework for gas flow in all flow regimes. Unlike the typical multiscale kinetic methods unified gas-kinetic s cheme (UGKS) and discrete unified gas-kinetic scheme (DUGKS), which concentrate on the evolution of the distribution function at the cell interface, in the present scheme the flux for macroscopic variables is split into the equilibrium part and the nonequilibrium part, and the nonequilibrium flux is calculated by integrating the discrete distribution function at the cell center, which overcomes the excess numerical dissipation of the conventional DVM in the continuum flow regime. Afterwards, the macroscopic variables are finally updated by simply integrating the discrete distribution function at the cell center, or by a blend of the increments based on the macroscopic and the microscopic systems, and the multiscale property is achieved. Several test cases, involving unsteady, steady, high speed, low speed gas flows in all flow regimes, have been performed, demonstrating the good performance of the multiscale DVM from free molecule to continuum Navier-Stokes solutions and the multiscale property of the scheme is proved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا