ﻻ يوجد ملخص باللغة العربية
In this work, we prove that any symplectic matrix can be factored into no more than 9 unit triangular symplectic matrices. This structure-preserving factorization of the symplectic matrices immediately reveals two well-known features that, (i) the determinant of any symplectic matrix is one, (ii) the matrix symplectic group is path connected, as well as a new feature that (iii) all the unit triangular symplectic matrices form a set of generators of the matrix symplectic group. Furthermore, this factorization yields effective methods for the unconstrained parametrization of the matrix symplectic group as well as its structured subsets. The unconstrained parametrization enables us to apply faster and more efficient unconstrained optimization algorithms to the problems with symplectic constraints under certain circumstances.
We prove that any symplectic matrix can be factored into no more than 5 unit triangular symplectic matrices, moreover, 5 is the optimal number. This result improves the existing triangular factorization of symplectic matrices which gives proof of 9 b
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the grou
We prove that the Gromov width of coadjoint orbits of the symplectic group is at least equal to the upper bound known from the works of Zoghi and Caviedes. This establishes the actual Gromov width. Our work relies on a toric degeneration of a coadjoi
Using a Hodge decomposition of symplectic isotopies on a compact symplectic manifold $(M,omega)$, we construct a norm on the identity component in the group of all symplectic diffeomorphisms of $(M,omega)$ whose restriction to the group $Ham(M,omega)
For $(mathbb{C} P^2 # 5{overline {mathbb{C} P^2}},omega)$, let $N_{omega}$ be the number of $(-2)$-symplectic spherical homology classes.We completely determine the Torelli symplectic mapping class group (Torelli SMCG): the Torelli SMCG is trivial if