ﻻ يوجد ملخص باللغة العربية
We prove that the Gromov width of coadjoint orbits of the symplectic group is at least equal to the upper bound known from the works of Zoghi and Caviedes. This establishes the actual Gromov width. Our work relies on a toric degeneration of a coadjoint orbit to a toric variety. The polytope associated to this toric variety is a string polytope arising from a string parametrization of elements of a crystal basis for a certain representation of the symplectic group.
By Delzants theorem, closed symplectic toric manifolds are classified by the images of moment maps. In the case of a generalized Bott manifold, this image is a polytope $P$ combinatorially equivalent to the product of simplices. We compute the Gromov
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the grou
In this paper we exploit the geometric approach to the virtual fundamental class, due to Fukaya-Ono and Li-Tian, to compare the virtual fundamental classes of stable maps to a symplectic manifold and a symplectic submanifold whenever all constrained
In this work, we prove that any symplectic matrix can be factored into no more than 9 unit triangular symplectic matrices. This structure-preserving factorization of the symplectic matrices immediately reveals two well-known features that, (i) the de
Let $(X,omega)$ be a compact symplectic manifold, $L$ be a Lagrangian submanifold and $V$ be a codimension 2 symplectic submanifold of $X$, we consider the pseudoholomorphic maps from a Riemann surface with boundary $(Sigma,partialSigma)$ to the pair