ﻻ يوجد ملخص باللغة العربية
We report on two instabilities called viscous fountain and viscous entrainment triggered at the interface between two liquids by the action of bulk flows driven by a laser beam. These streaming flows are due to light scattering losses in turbid liquids, and can be directed either toward or forward the interface. We experimentally and numerically investigate these interface instabilities and show that the height and curvature of the interface deformation at the threshold and the jet radius after interface destabilization mainly depend on the waist of the laser beam. Analogies and differences between these two instabilities are characterized.
We investigate the radial thermocapillary flow driven by a laser-heated microbead in partial wetting at the water-air interface. Particular attention is paid to the evolution of the convective flow patterns surrounding the hot sphere as the latter is
Dynamics of regular clusters of many non-touching particles falling under gravity in a viscous fluid at low Reynolds number are analysed within the point-particle model. Evolution of two families of particle configurations is determined: 2 or 4 regul
We study the features of a radial Stokes flow due to a submerged jet directed toward a liquid-air interface. The presence of surface-active impurities confers to the interface an in-plane elasticity that resists the incident flow. Both analytical and
We present the first 3-dimensional, fully compressible gas-dynamics simulations in $4pi$ geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed c
Spin waves are promising information carriers which can be used in modern magnonic devices, characterized by higher performance and lower energy consumption than presently used electronic circuits. However, before practical application of spin waves,