ﻻ يوجد ملخص باللغة العربية
Solving linear systems and computing eigenvalues are two fundamental problems in linear algebra. For solving linear systems, many efficient quantum algorithms have been discovered. For computing eigenvalues, currently, we have efficient quantum algorithms for Hermitian and unitary matrices. However, the general case is far from fully understood. Combining quantum phase estimation, quantum algorithm to solve linear differential equations and quantum singular value estimation, we propose two quantum algorithms to compute the eigenvalues of diagonalizable matrices that only have real eigenvalues and normal matrices. The output of the quantum algorithms is a superposition of the eigenvalues and the corresponding eigenvectors. The complexities are dominated by solving a linear system of ODEs and performing quantum singular value estimation, which usually can be solved efficiently in a quantum computer. In the special case when the matrix $M$ is $s$-sparse, the complexity is $widetilde{O}(srho^2 kappa^2/epsilon^2)$ for diagonalizable matrices that only have real eigenvalues, and $widetilde{O}(srho|M|_{max} /epsilon^2)$ for normal matrices. Here $rho$ is an upper bound of the eigenvalues, $kappa$ is the conditioning of the eigenvalue problem, and $epsilon$ is the precision to approximate the eigenvalues. We also extend the quantum algorithm to diagonalizable matrices with complex eigenvalues under an extra assumption.
Quantum computing is experiencing the transition from a scientific to an engineering field with the promise to revolutionize an extensive range of applications demanding high-performance computing. Many implementation approaches have been pursued for
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report the first experimental realization of the complete process of deterministic one-way quantum Deut
The question of whether there exists an approximation procedure to compute the resonances of any Helmholtz resonator, regardless of its particular shape, is addressed. A positive answer is given, and it is shown that all that one has to assume is tha
The LINPACK benchmark reports the performance of a computer for solving a system of linear equations with dense random matrices. Although this task was not designed with a real application directly in mind, the LINPACK benchmark has been used to defi
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interp