ﻻ يوجد ملخص باللغة العربية
Biological cells and many living organisms are mostly made of liquids and therefore, by analogy with liquid drops, they should exhibit a range of fundamental nonlinear phenomena such as the onset of standing surface waves. Here, we test four common species of earthworm to demonstrate that vertical vibration of living worms lying horizontally of a flat solid surface results in the onset of subharmonic Faraday-like body waves, which is possible because earthworms have a hydrostatic skeleton with a flexible skin and a liquid-filled body cavity. Our findings are supported by theoretical analysis based on a model of parametrically excited vibrations in liquid-filled elastic cylinders using material parameters of the worms body reported in the literature. The ability to excite nonlinear subharmonic body waves in a living organism could be used to probe, and potentially to control, important biophysical processes such as the propagation of nerve impulses, thereby opening up avenues for addressing biological questions of fundamental impact.
The nonequilibrium activity taking place in a living cell can be monitored with a tracer embedded in the medium. While microrheology experiments based on optical manipulation of such probes have become increasingly standard, we put forward a number o
Five-minutes oscillations is one of the basic properties of solar convection. Observations show mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point o
Soft bodies flowing in a channel often exhibit parachute-like shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and b
We study the flow of membranal fluid through a ring of immobile particles mimicking, for example, a fence around a membrane corral. We obtain a simple closed-form expression for the permeability coefficient of the ring as a function of the particles
Tracer particles immersed in suspensions of biological microswimmers such as E. coli or Chlamydomonas display phenomena unseen in conventional equilibrium systems, including strongly enhanced diffusivity relative to the Brownian value and non-Gaussia