ﻻ يوجد ملخص باللغة العربية
Soft bodies flowing in a channel often exhibit parachute-like shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes --- which are classified as bullet, croissant and parachute --- in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.
We study the flow of membranal fluid through a ring of immobile particles mimicking, for example, a fence around a membrane corral. We obtain a simple closed-form expression for the permeability coefficient of the ring as a function of the particles
Complex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions such as proliferation, motility, and cell death, and such cellular systems are often characte
Unravelling the physical mechanisms behind the organisation of lipid domains is a central goal in cell biology and membrane biophysics. Previous studies on cells and model lipid bilayers featuring phase-separated domains found an intricate interplay
Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As a model system to study adsorption-medi
While the behavior of vesicles in thermodynamic equilibrium has been studied extensively, how active forces control vesicle shape transformations is not understood. Here, we combine theory and simulations to study the shape behavior of vesicles conta