ﻻ يوجد ملخص باللغة العربية
Differential cross sections for elastic Compton scattering from $^4$He have been measured with high statistical precision at the High Intensity $gamma$-ray Source at laboratory scattering angles of $55^circ$, $90^circ$, and $125^circ$ using a quasi-monoenergetic photon beam with a weighted mean energy value of $81.3$ MeV. The results are compared to previous measurements and similar fore-aft asymmetry in the angular distribution of the differential cross sections is observed. This experimental work is expected to strongly motivate the development of effective-field-theory calculations of Compton scattering from $^4$He to fully interpret the data.
We use the next-to-leading-order (NLO) amplitude in an effective field theory (EFT) for ${}^3$He + ${}^4$He $rightarrow {}^7$Be + $gamma$ to perform the extrapolation of higher-energy data to solar energies. At this order the EFT describes the captur
We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment used the 6 GeV electron beam from the CEBAF accelerator at Jefferson Lab incident on a
Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were meas
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $time
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixe