ﻻ يوجد ملخص باللغة العربية
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $times$ 64 cm NaI(Tl) photon detector and the Gottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $theta^{LAB}_gamma=136.2^circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(gamma,pi^+ n)$. The free proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $alpha-beta= 9.8pm 3.6(stat){}^{2.1}_1.1(syst)pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $alpha +beta=15.2pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $alpha_n=12.5pm 1.8(stat){}^{+1.1}_{-0.6}pm 1.1(model)$ and $beta_n=2.7mp 1.8(stat){}^{+0.6}_{-1.1}(syst)mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $gamma^{(n)}_pi=(58.6pm 4.0)times 10^{-4}fm^4$.
This review gives an update on virtual Compton scattering (VCS) off the nucleon, $gamma^* N to N gamma$, in the low-energy regime. We recall the theoretical formalism related to the generalized polarizabilities (GPs) and model predictions for these o
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the
The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case
The generalized forward spin polarizabilities $gamma_0$ and $delta_{LT}$ of the neutron have been extracted for the first time in a $Q^2$ range from 0.1 to 0.9 GeV$^2$. Since $gamma_0$ is sensitive to nucleon resonances and $delta_{LT}$ is insensitiv
Motivated by the fact that a polarized ${}^3$He nucleus behaves as an `effective neutron target, we examine manifestations of neutron electromagnetic polarizabilities in elastic Compton scattering from the Helium-3 nucleus. We calculate both unpolari