ﻻ يوجد ملخص باللغة العربية
The magnetic flux periodicity of $frac{hc}{2e}$ is a well known manifestation of Cooper pairing in typical s-wave superconductors. In this paper we theoretically show that the flux periodicity of a two-dimensional second-order topological superconductor, which features zero-energy Majorana modes localized at the corners of the sample, is $frac{hc}{e}$ instead. We further show that the periodicity changes back to $frac{hc}{2e}$ at the transition to a topologically trivial superconductor, where the Majorana modes hybridize with the bulk states, demonstrating that the doubling of periodicity is a manifestation of the non-trivial topology of the state.
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-pa
Two-dimensional second-order topological superconductors host zero-dimensional Majorana bound states at their boundaries. In this work, focusing on rotation-invariant crystalline topological superconductors, we establish a bulk-boundary correspondenc
We theoretically investigate the Floquet generation of second-order topological superconducting (SOTSC) phase in the high-temperature platform both in two-dimension (2D) and three-dimension (3D). Starting from a $d$-wave superconducting pairing gap,
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hi
Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline boundaries, but topologically protected gapless states at the intersection of two boundaries. Without further spatial symmetries, five of the ten