ﻻ يوجد ملخص باللغة العربية
We report an object tracking algorithm that combines geometrical constraints, thresholding, and motion detection for tracking of the descending aorta and the network of major arteries that branch from the aorta including the iliac and femoral arteries. Using our automated identification and analysis, arterial system was identified with more than 85% success when compared to human annotation. Furthermore, the reported automated system is capable of producing a stenosis profile, and a calcification score similar to the Agatston score. The use of stenosis and calcification profiles will lead to the development of better-informed diagnostic and prognostic tools.
Sepsis is a leading cause of mortality and critical illness worldwide. While robust biomarkers for early diagnosis are still missing, recent work indicates that hyperspectral imaging (HSI) has the potential to overcome this bottleneck by monitoring m
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed
Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of do
The Gleason score is the most important prognostic marker for prostate cancer patients but suffers from significant inter-observer variability. We developed a fully automated deep learning system to grade prostate biopsies. The system was developed u