ﻻ يوجد ملخص باللغة العربية
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lumen diameter, reference vessel diameter, lesion length, and these indices are the reference of the interventional stent placement. In this study, we propose a direct multiview quantitative coronary angiography (DMQCA) model as an automatic clinical tool to quantify the coronary artery stenosis from X-ray coronary angiography images. The proposed DMQCA model consists of a multiview module with two attention mechanisms, a key-frame module, and a regression module, to achieve direct accurate multiple-index estimation. The multi-view module comprehensively learns the Spatio-temporal features of coronary arteries through a three-dimensional convolution. The attention mechanisms of each view focus on the subtle feature of the lesion region and capture the important context information. The key-frame module learns the subtle features of the stenosis through successive dilated residual blocks. The regression module finally generates the indices estimation from multiple features.
Coronary artery disease (CAD) has posed a leading threat to the lives of cardiovascular disease patients worldwide for a long time. Therefore, automated diagnosis of CAD has indispensable significance in clinical medicine. However, the complexity of
In stable coronary artery disease (CAD), reduction in mortality and/or myocardial infarction with revascularization over medical therapy has not been reliably achieved. Coronary arteries are usually extracted to perform stenosis detection. We aim to
Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagn
The segmentation of coronary arteries by convolutional neural network is promising yet requires a large amount of labor-intensive manual annotations. Transferring knowledge from retinal vessels in widely-available public labeled fundus images (FIs) h
The reconstruction of three-dimensional models of coronary arteries is of great significance for the localization, evaluation and diagnosis of stenosis and plaque in the arteries, as well as for the assisted navigation of interventional surgery. In t