ﻻ يوجد ملخص باللغة العربية
Periodically driven Floquet quantum systems provide a promising platform to investigate novel physics out of equilibrium. Unfortunately, the drive generically heats up the system to a featureless infinite temperature state. For large driving frequency, the heat absorption rate is predicted to be exponentially small, giving rise to a long-lived prethermal regime which exhibits all the intriguing properties of Floquet systems. Here we experimentally observe Floquet prethermalization using nuclear magnetic resonance techniques. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by the time-independent prethermal Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that in the timescale when the effective Hamiltonian picture breaks down, the Floquet system still possesses other quasi-conservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic re
Prethermalization refers to the physical phenomenon where a system evolves toward some long-lived non-equilibrium steady state before eventual thermalization sets in. One general scenario where this occurs is in driven systems with dynamics governed
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small
Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in protecting Floquet many-body phases over exponentially long time, while the ultimate fate of such quasiconserved operators can signal thermalization to inf
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating