ترغب بنشر مسار تعليمي؟ اضغط هنا

Doublet-Triplet Splitting in Fertile Left-Right Symmetric Heterotic String Vacua

126   0   0.0 ( 0 )
 نشر من قبل Alon Faraggi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Classification of Left-Right Symmetric (LRS) heterotic-string vacua in the free fermionic formulation, using random generation of generalised GSO (GGSO) projection coefficients, produced phenomenologically viable models with probability $4times 10^{-11}$. Extracting substantial number of phenomenologically viable models requires modification of the classification method. This is achieved by identifying phenomenologically amenable conditions on the Generalised GSO projection coefficients that are randomly generated at the $SO(10)$ level. Around each of these fertile cores we perform a complete LRS classification, generating viable models with probabilility $1.4times 10^{-2}$, hence increasing the probability of generating phenomenologically viable models by nine orders of magnitude, and producing some $1.4times 10^5$ such models. In the process we identify a doublet-triplet selection mechanism that operates in twisted sectors of the string models that break the $SO(10)$ symmetry to the Pati-Salam subgroup. This mechanism therefore operates as well in free fermionic models with Pati-Salam and Standard-like Model $SO(10)$ subgroups.



قيم البحث

اقرأ أيضاً

The heterotic--string models in the free fermionic formulation gave rise to some of the most realistic string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-s upersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi--realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non--realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi--realistic, non--supersymmetric, non--tachyonic, heterotic--string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce massless and massive states, other sectors, and in particular those leading to the chiral families, continue to exhibit fermi-bose degeneracy. In these sectors the massless spectrum, as compared to the supersymmetric cases, will only differ in some local or global U(1) charges. We discuss the conditions for obtaining $n_b=n_f$ at the massless level in these models. Our example model contains an anomalous U(1) symmetry, which generates a tadpole diagram at one loop-order in string perturbation theory. We speculate that this tadpole diagram may cancel the corresponding diagram generated by the one-loop non-vanishing vacuum energy and that in this respect the supersymmetric and non-supersymmetric vacua should be regarded on equal footing. Finally we discuss vacua that contain two supersymmetry generating sectors.
We apply Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers in the context of finding chiral heterotic string models with positive cosmological constant from $mathbb{Z}_2times mathbb{Z}_2$ orbifolds. The power of using SAT/ SMT solvers to sift large parameter spaces quickly to decide satisfiability, both to declare and prove unsatisfiability and to declare satisfiability, are demonstrated in this setting. These models are partly chosen to be small enough to plot the performance against exhaustive search, which takes around 2 hours 20 minutes to comb through the parameter space. We show that making use of SMT based techniques with integer encoding is rather simple and effective, while a more careful Boolean SAT encoding provides a significant speed-up -- determining satisfiability or unsatisfiability has, in our experiments varied between 0.03 and 0.06 seconds, while determining all models (where models exist) took 19 seconds for a constraint system that allows for 2048 models and 8.4 seconds for a constraint system that admits 640 models. We thus gain several orders of magnitude in speed, and this advantage is set to grow with a growing parameter space. This holds the promise that the method scales well beyond the initial problem we have used it for in this paper.
Recently it was proposed that ten-dimensional tachyonic string vacua may serve as starting points for the construction of viable four dimensional phenomenological string models which are tachyon free. This is achieved by projecting out the tachyons i n the four-dimensional models using projectors other than the projector which is utilised in the supersymmetric models and those of the $SO(16)times SO(16)$ heterotic string. We continue the exploration of this class of models by developing systematic computerised tools for their classification, the analysis of their tachyonic and massless spectra, as well as analysis of their partition functions and vacuum energy. We explore a randomly generated space of $2times10^9$ string vacua in this class and find that tachyon--free models occur with $sim 5times 10^{-3}$ probability, and of those, phenomenologically inclined $SO(10)$ vacua with $a_{00}=N_b^0-N_f^0=0$, i.e. equal number of fermionic and bosonic massless states, occur with frequency $sim 2times 10^{-6}$. Extracting larger numbers of phenomenological vacua therefore requires adaptation of fertility conditions that we discuss, and significantly increase the frequency of tachyon--free models. Our results suggest that spacetime supersymmetry may not be a necessary ingredient in phenomenological string models, even at the Planck scale.
We develop the idea for a new string field theory of ours that was proposed earlier in a very rudimentary form in a talk in the Symposium of Tohwa University [1]. The main point is to describe the system of strings in the Universe by means of the ima ges of the derivatives of the right and left mover parts of the 26-position vector on the strings w.r.t. tau. The major progress since the Tohwa-talks [1] is to imagine a discretization of the variables on which right and left movers respectively depend. We then observe that, by using only the descritized even-numbered sites, we can set the commutation rules for second quantization without any contradiction. In fact we can quantize the objects described by these even numbered images. A light-cone frame description of the string field theory in this way is presented.
249 - E. Kh. Akhmedov 2005
We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos $m_ u$ and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix $f$, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution $f$, there is a dual solution $hat{f}=m_ u/v_L-f$, where $v_L$ is the VEV of the triplet Higgs. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix $f$. For $n$ lepton generations the number of solutions is $2^n$. We develop an exact analytic method of solving the seesaw non-linear matrix equation for $f$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا