ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the Classification of Tachyon-Free Models From Tachyonic Ten-Dimensional Heterotic String Vacua

70   0   0.0 ( 0 )
 نشر من قبل Alon Faraggi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently it was proposed that ten-dimensional tachyonic string vacua may serve as starting points for the construction of viable four dimensional phenomenological string models which are tachyon free. This is achieved by projecting out the tachyons in the four-dimensional models using projectors other than the projector which is utilised in the supersymmetric models and those of the $SO(16)times SO(16)$ heterotic string. We continue the exploration of this class of models by developing systematic computerised tools for their classification, the analysis of their tachyonic and massless spectra, as well as analysis of their partition functions and vacuum energy. We explore a randomly generated space of $2times10^9$ string vacua in this class and find that tachyon--free models occur with $sim 5times 10^{-3}$ probability, and of those, phenomenologically inclined $SO(10)$ vacua with $a_{00}=N_b^0-N_f^0=0$, i.e. equal number of fermionic and bosonic massless states, occur with frequency $sim 2times 10^{-6}$. Extracting larger numbers of phenomenological vacua therefore requires adaptation of fertility conditions that we discuss, and significantly increase the frequency of tachyon--free models. Our results suggest that spacetime supersymmetry may not be a necessary ingredient in phenomenological string models, even at the Planck scale.



قيم البحث

اقرأ أيضاً

Recently it was proposed that the ten dimensional tachyonic superstring vacua may serve as good starting points for the construction of viable phenomenological models. Such phenomenologically viable models enlarge the space of possible string solutio ns, and may offer novel insight into some of the outstanding problems in string phenomenology. In this paper we present a three generation standard--like model that may be regarded as a compactification of a ten dimensional tachyonic vacuum. We discuss the features of the model as compared to a similar model that may be regarded as compactification of the ten dimensional $SO(16)times SO(16)$ heterotic-string. We further argue that in the four dimensional model all the geometrical moduli are fixed perturbatively, whereas the dilaton may be fixed by hidden sector non--perturbative effects.
The heterotic--string models in the free fermionic formulation gave rise to some of the most realistic string models to date, which possess N=1 spacetime supersymmetry. Lack of evidence for supersymmetry at the LHC instigated recent interest in non-s upersymmetric heterotic-string vacua. We explore what may be learned in this context from the quasi--realistic free fermionic models. We show that constructions with a low number of families give rise to proliferation of a priori tachyon producing sectors, compared to the non--realistic examples, which typically may contain only one such sector. The reason being that in the realistic cases the internal six dimensional space is fragmented into smaller units. We present one example of a quasi--realistic, non--supersymmetric, non--tachyonic, heterotic--string vacuum and compare the structure of its massless spectrum to the corresponding supersymmetric vacuum. While in some sectors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors produce massless and massive states, other sectors, and in particular those leading to the chiral families, continue to exhibit fermi-bose degeneracy. In these sectors the massless spectrum, as compared to the supersymmetric cases, will only differ in some local or global U(1) charges. We discuss the conditions for obtaining $n_b=n_f$ at the massless level in these models. Our example model contains an anomalous U(1) symmetry, which generates a tadpole diagram at one loop-order in string perturbation theory. We speculate that this tadpole diagram may cancel the corresponding diagram generated by the one-loop non-vanishing vacuum energy and that in this respect the supersymmetric and non-supersymmetric vacua should be regarded on equal footing. Finally we discuss vacua that contain two supersymmetry generating sectors.
We extend the classification of fermionic $mathbb{Z}_2timesmathbb{Z}_2$ heterotic string orbifolds to non--supersymmetric Pati--Salam (PS) models in two classes of vacua, that we dub $tilde S$--models and $S$--models. The first correspond to compacti fications of a tachyonic ten--dimensional vacuum, whereas the second correspond to compactifications of the ten--dimensional tachyon--free $SO(16)times SO(16)$ heterotic string. In both cases we develop a systematic method to extract tachyon--free four--dimensional models. We show that tachyon--free configurations arise with probability $sim0.002$ and $sim0.01$ in the first and second case, respectively. We adapt the `fertility methodology that facilitates the extraction of phenomenological models. We show that Pati--Salam $tilde S$--models do not contain heavy Higgs scalar representations that are required to break the PS symmetry to the Standard Model and are therefore not phenomenologically viable. Hence, we argue that in $tilde S$--models the $SO(10)$ GUT symmetry must be broken at the string scale to the Standard--like Model subgroup. We extract tachyon--free three generation models in both cases that contain an equal number of massless bosonic and fermionic degrees of freedom, ${it i.e.}$ with $a_{00}=N_b^0-N_f^0=0$, and analyse their one--loop partition function.
132 - Jihn E. Kim 2020
Grand unification groups (GUTs) are constructed from SO(32) heterotic string via $Z_{12-I}$ orbifold compactification. So far, most phenomenological studies from string compactification relied on $EE8$ heterotic string, and this invites the SO(32) he terotic string very useful for future phenomenological studies. Here, spontaneous symmetry breaking is achieved by Higgsing of the anti-symmetric tensor representations of SU($N$). The anti-SU($N$) presented in this paper is a completely different class from the flipped-SU($N$)s from the spinor representations of SO($2N$). Here, we realize chiral representations: $tsixoplus 5cdot ineb $ for a SU(9) GUT and $3{{ten}_Loplus {fiveb}_L}$ for a SU(5)$$ GUT. In particular, we confirm that the non-Abelian anomalies of SU(9) gauge group vanish and hence our compactification scheme achieves the key requirement. We also present the Yukawa couplings, in particular for the heaviest fermion, $t$, and lightest fermions, neutrinos. In the supersymmetric version, we present a scenario how supersymmetry can be broken dynamically via the confining gauge group SU(9). Three families in the visible sector are interpreted as the chiral spectra of SU(5)$$ GUT.
Using Z3 asymmetric orbifolds in heterotic string theory, we construct N=1 SUSY three-generation models with the standard model gauge group SU(3)_C times SU(2)_L times U(1)_Y and the left-right symmetric group SU(3)_C times SU(2)_L times SU(2)_R time s U(1)_{B-L}. One of the models possesses a gauge flavor symmetry for the Z3 twisted matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا