ﻻ يوجد ملخص باللغة العربية
Photodisintegration of polarized 3He by linearly or circularily polarized photons offers a rich choice of observables which can be calculated with high precision using a rigorous scheme of three-nucleon Faddeev equations. Using the (semi)phenomenological AV18 nucleon-nucleon potential combined with the Urbana IX three-nucleon force we investigate sensitivity of 3He photodisintegration observables to underlying currents taken in the form of a single-nucleon current supplemented by two-body contributions for $pi$- and $rho$-meson exchanges or incorporated by the Siegert theorem. Promising observables to be measured for two- and three-body fragmentation of 3He are identified. These observables form a challenging test ground for consistent forces and currents being under derivation within the framework of chiral perturbation theory. For thre-body 3He photodisintegration several kinematicaly complete configurations, including SST and FSI, are also discussed.
Inclusive 3He(e,e) and exclusive 3He(e,en) processes with polarized electrons and 3He have been theoretically analyzed and values for the magnetic and electric neutron form factors have been extracted. In both cases the form factor values agree well
Proton-3He scattering is one of the good probes to study the T=3/2 channel of three--nucleon forces. We have measured 3He analyzing powers for p-3He elastic scattering with the polarized 3He target at 70 and 100 MeV. The data are compared with the th
We show that the asymmetries in the nuclear resonance fluorescence processes with a circular polarized photon beam may be used as a tool for studying the parity non-conservation (PNC) in nuclei. The PNC asymmetry measurements both in exciting the par
The gas breakdown produced by high-power pulsed linearly and circularly polarized microwave fields which are much weaker than the atomic fields is investigated in the non-relativistic limit. Obtained the electron distribution function produced by the
The Breit-Wheeler process which produces matter and anti-matter from photon collisions is investigated experimentally through the observation of 6085 exclusive electron-positron pairs in ultra-peripheral Au+Au collisions at $sqrt{s_{_{NN}}}=200$ GeV.