ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo radiative transfer for the nebular phase of Type Ia supernovae

152   0   0.0 ( 0 )
 نشر من قبل Luke Shingles
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the range of validity of the ARTIS 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium (non-LTE) population and ionisation solver, a new multi-frequency radiation field model, and a new atomic dataset with forbidden transitions. We treat collisions with non-thermal leptons resulting from nuclear decays to account for their contribution to excitation, ionisation, and heating. We validate our method with a variety of tests including comparing our synthetic nebular spectra for the well-known one-dimensional W7 model with the results of other studies. As an illustrative application of the code, we present synthetic nebular spectra for the detonation of a sub-Chandrasekhar white dwarf in which the possible effects of gravitational settling of Ne22 prior to explosion have been explored. Specifically, we compare synthetic nebular spectra for a 1.06 M$_odot$ white dwarf model obtained when 5.5 Gyr of very-efficient settling is assumed to a similar model without settling. We find that this degree of Ne22 settling has only a modest effect on the resulting nebular spectra due to increased Ni58 abundance. Due to the high ionisation in sub-Chandrasekhar models, the nebular [Ni II] emission remains negligible, while the [Ni III] line strengths are increased and the overall ionisation balance is slightly lowered in the model with Ne22 settling. In common with previous studies of sub-Chandrasekhar models at nebular epochs, these models overproduce [Fe III] emission relative to [Fe II] in comparison to observations of normal Type Ia supernovae.



قيم البحث

اقرأ أيضاً

We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at $>200$ days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxys light, and have early-time photometry and spectroscopy from the Las Cumbres Observatory (LCO). Parameters are derived from the light curves and spectra such as peak brightness, decline rate, photospheric velocity, and the widths and velocities of the forbidden nebular emission lines. We discuss the physical interpretations of these parameters for the individual SNe Ia and the sample in general, including comparisons to well-observed SNe Ia from the literature. There are possible correlations between early-time and late-time spectral features that may indicate an asymmetric explosion, so we discuss our sample of SNe within the context of models for an offset ignition and/or white dwarf collisions. A subset of our late-time spectra are uncontaminated by host emission, and we statistically evaluate our nondetections of H$alpha$ emission to limit the amount of hydrogen in these systems. Finally, we consider the late-time evolution of the iron emission lines, finding that not all of our SNe follow the established trend of a redward migration at $>200$ days after maximum brightness.
The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emis sion complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light curve width and ejected mass) and find the $^{56}$Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), $M_{Ni}$ is clustered near $M_{Ni}$ ~ 0.4$M_odot$ and shows a shallow increase as $M_{ej}$ increases from ~1-1.4$M_odot$; at high stretch, $M_{ej}$ clusters at the Chandrasekhar mass (1.4$M_odot$) while $M_{Ni}$ spans a broad range from 0.6-1.2$M_odot$. This could constitute evidence for two distinct SN Ia explosion mechanisms.
We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular phase spectra. Upper limits are placed on the amount of mass that could go undetected in each spectrum using recent hydrodynamic simulations. With these null detections, we place an observational $3sigma$ upper limit on the fraction of SNe Ia that are produced through the classical H-rich non-degenerate companion scenario of < 5.5%. Additionally, we set a tentative $3sigma$ upper limit on He star progenitor scenarios of < 6.4%, although further theoretical modelling is required. These limits refer to our most representative sample including normal, 91bg-like, 91T-like, and Super Chandrasekhar sne but excluding SNe Iax and SNe Ia-CSM. As part of our analysis, we also derive a Nebular Phase Phillips Relation, which approximates the brightness of a SN Ia from $150-500$~days after maximum using the peak magnitude and decline rate parameter $Delta m_{15} (B)$.
203 - Luc Dessart 2020
Supernova (SN) explosions, through the metals they release, play a pivotal role in the chemical evolution of the Universe and the origin of life. Nebular phase spectroscopy constrains such metal yields, for example through forbidden line emission ass ociated with OI, CaII, FeII, or FeIII. Fluid instabilities during the explosion produce a complex 3D ejecta structure, with considerable macroscopic, but no microscopic, mixing of elements. This structure sets a formidable challenge for detailed nonlocal thermodynamic equilibrium radiative transfer modeling, which is generally limited to 1D in grid-based codes. Here, we present a novel and simple method that allows for macroscopic mixing without any microscopic mixing, thereby capturing the essence of mixing in SN explosions. With this new technique, the macroscopically mixed ejecta is built by shuffling in mass space, or equivalently in velocity space, the shells from the unmixed coasting ejecta. The method requires no change to the radiative transfer, but necessitates high spatial resolution to resolve the rapid variation in composition with depth inherent to this shuffled-shell structure. We show results for a few radiative-transfer simulations for a Type II SN explosion from a 15Msun progenitor star. Our simulations capture the strong variations in temperature or ionization between the various shells that are rich in H, He, O, or Si. Because of nonlocal energy deposition, gamma rays permeate through an extended region of the ejecta, making the details of the shell arrangement unimportant. The greater physical consistency of the method delivers spectral properties at nebular times that are more reliable, in particular in terms of individual emission line strengths, which may serve to constrain the SN yields and, for core collapse SNe, the progenitor mass. The method works for all SN types.
123 - Luc Dessart 2020
Nebular phase spectra of core-collapse supernovae (SNe) provide critical and unique information on the progenitor massive star and its explosion. We present a set of 1-D steady-state non-local thermodynamic equilibrium radiative transfer calculations of type II SNe at 300d after explosion. Guided by results for a large set of stellar evolution simulations, we craft ejecta models for type II SNe from the explosion of a 12, 15, 20, and 25Msun star. The ejecta density structure and kinetic energy, the 56Ni mass, and the level of chemical mixing are parametrized. Our model spectra are sensitive to the adopted line Doppler width, a phenomenon we associate with the overlap of FeII and OI lines with Lyalpha and Lybeta. Our spectra show a strong sensitivity to 56Ni mixing since it determines where decay power is absorbed. Even at 300d after explosion, the H-rich layers reprocess the radiation from the inner metal rich layers. In a given progenitor model, variations in 56Ni mass and distribution impact the ejecta ionization, which can modulate the strength of all lines. Such ionization shifts can quench CaII line emission. In our set of models, the OI6300 doublet strength is the most robust signature of progenitor mass. However, we emphasize that convective shell merging in the progenitor massive star interior can pollute the O-rich shell with Ca, which will weaken the OI6300 doublet flux in the resulting nebular SN II spectrum. This process may occur in Nature, with a greater occurrence in higher mass progenitors, and may explain in part the preponderance of progenitor masses below 17Msun inferred from nebular spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا