ﻻ يوجد ملخص باللغة العربية
The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light curve width and ejected mass) and find the $^{56}$Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), $M_{Ni}$ is clustered near $M_{Ni}$ ~ 0.4$M_odot$ and shows a shallow increase as $M_{ej}$ increases from ~1-1.4$M_odot$; at high stretch, $M_{ej}$ clusters at the Chandrasekhar mass (1.4$M_odot$) while $M_{Ni}$ spans a broad range from 0.6-1.2$M_odot$. This could constitute evidence for two distinct SN Ia explosion mechanisms.
We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at $>200$ days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxys light, and
We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular phase spectra. Upper limits are placed on the amount of
We extend the range of validity of the ARTIS 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium (non-LTE) population and
Type II supernovae (SNe) often exhibit a linear polarization, arising from free-electron scattering, with complicated optical signatures, both in the continuum and in lines. Focusing on the early nebular phase, at a SN age of 200d, we conduct a syste
We present predictions for hydrogen and helium emission line luminosities from circumstellar matter around Type Ia supernovae (SNe Ia) using time dependent photoionization modeling. ESO/VLT optical echelle spectra of the SN Ia 2000cx were taken befor