ﻻ يوجد ملخص باللغة العربية
We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in $mathbb{R}mathrm{P}^n$. Using a random spectral sequence, we prove an asymptotically exact estimate on the expected number of connected components in the complement of $s$ such hypersurfaces in $mathbb{R}mathrm{P}^n$. We also investigate the same problem in the case where the hypersurfaces are defined by random quadratic polynomials. In this case, we establish a connection between the Betti numbers of such arrangements with the expected behavior of a certain model of a randomly defined geometric graph. While our general result implies that the average zeroth Betti number of the union of random hypersurface arrangements is bounded from above by a function that grows linearly in the number of polynomials in the arrangement, using the connection with random graphs, we show an upper bound on the expected zeroth Betti number of random quadrics arrangements that is sublinear in the number of polynomials in the arrangement. This bound is a consequence of a general result on the expected number of connected components in our random graph model which could be of independent interest.
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
In this paper, we compute the sum of the Betti numbers for 6 of the 7 families of smooth Hilbert schemes over projective space.
We compute the integral cohomology groups of the smooth Brill-Noether varieties $G^r_d(C)$, parametrizing linear series of degree $d$ and dimension exactly $r$ on a general curve $C$. As an application, we determine the whole intersection cohomology
Let X be a compact Riemann surface together with a finite set of marked points. We use Morse theoretic techniques to compute the Betti numbers of the parabolic U(2,1)-Higgs bundles moduli spaces over X. We give examples for one marked point showing t