ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithm for automated tuning of a quantum dot into the single-electron regime

148   0   0.0 ( 0 )
 نشر من قبل Maxime Lapointe-Major
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an algorithm designed to perform computer-automated tuning of a single quantum dot with a charge sensor. The algorithm performs an adaptive measurement sequence of sub-sized stability diagrams until the single-electron regime is identified and reached. For each measurement, the signal processing module removes the physical background of the charge sensor to generate a binary image of charge transitions. Then, the image analysis module identifies the position and number of lines using two line detection schemes that are robust to noise and missing data.



قيم البحث

اقرأ أيضاً

In this article we describe the incoherent and coherent spin and charge dynamics of a single electron quantum dot. We use a stochastic master equation to model the state of the system, as inferred by an observer with access to only the measurement si gnal. Measurements obtained during an interval of time contribute, by a past quantum state analysis, to our knowledge about the system at any time $t$ within that interval. Such analysis permits precise estimation of physical parameters, and we propose and test a modification of the classical Baum-Welch parameter re-estimation method to systems driven by both coherent and incoherent processes.
Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide a scalable platform for quantum information processing and quantum simulations. For the operation of quantum dot arrays, appropriate voltages need to be applied t o the gate electrodes that define the quantum dot potential landscape. Tuning the gate voltages has proven to be a time-consuming task, because of initial electrostatic disorder and capacitive cross-talk effects. Here, we report on the automated tuning of the inter-dot tunnel coupling in a linear array of gate-defined semiconductor quantum dots. The automation of the tuning of the inter-dot tunnel coupling is the next step forward in scalable and efficient control of larger quantum dot arrays. This work greatly reduces the effort of tuning semiconductor quantum dots for quantum information processing and quantum simulation.
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing archite cture lies in demonstrating the ability to scale the system to many qubits. In this letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dots excited state. We obtain a lower bound on the fidelity of entanglement of 0.59, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3 x 10^3 s^-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with th e highest possible degree of coherence. This requires perfect mode overlap of the emitted light of different emitters, which necessitates the use of single mode fibers. Here we present an advanced manufacturing approach to accomplish this task: we combine 3D printed complex micro-optics such as hemispherical and Weierstrass solid immersion lenses as well as total internal reflection solid immersion lenses on top of single InAs quantum dots with 3D printed optics on single mode fibers and compare their key features. Interestingly, the use of hemispherical solid immersion lenses further increases the localization accuracy of the emitters to below 1 nm when acquiring micro-photoluminescence maps. The system can be joined together and permanently fixed. This integrated system can be cooled by dipping into liquid helium, by a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single mode fiber. We identify the ideal optical designs and present experiments that prove excellent high-rate single-photon emission by high-contrast Hanbury Brown and Twiss experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا