ترغب بنشر مسار تعليمي؟ اضغط هنا

3D printed micro-optics for quantum technology: Optimized coupling of single quantum dot emission into a single mode fiber

83   0   0.0 ( 0 )
 نشر من قبل Ksenia Weber
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with the highest possible degree of coherence. This requires perfect mode overlap of the emitted light of different emitters, which necessitates the use of single mode fibers. Here we present an advanced manufacturing approach to accomplish this task: we combine 3D printed complex micro-optics such as hemispherical and Weierstrass solid immersion lenses as well as total internal reflection solid immersion lenses on top of single InAs quantum dots with 3D printed optics on single mode fibers and compare their key features. Interestingly, the use of hemispherical solid immersion lenses further increases the localization accuracy of the emitters to below 1 nm when acquiring micro-photoluminescence maps. The system can be joined together and permanently fixed. This integrated system can be cooled by dipping into liquid helium, by a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single mode fiber. We identify the ideal optical designs and present experiments that prove excellent high-rate single-photon emission by high-contrast Hanbury Brown and Twiss experiments.



قيم البحث

اقرأ أيضاً

User-friendly single-photon sources with high photon-extraction efficiency are crucial building blocks for photonic quantum applications. For many of these applications, such as long-distance quantum key distribution, the use of single-mode optical f ibers is mandatory, which leads to stringent requirements regarding the device design and fabrication. We report on the on-chip integration of a quantum dot microlens with a 3D-printed micro-objective in combination with a single-mode on-chip fiber coupler. The practical quantum device is realized by deterministic fabrication of the QD-microlens via in-situ electron-beam lithography and 3D two-photon laser writing of the on-chip micro-objective and fiber-holder. The QD with microlens is an efficient single-photon source, whose emission is collimated by the on-chip micro-objective. A second polymer microlens is located at the end facet of the single-mode fiber and ensures that the collimated light is efficiently coupled into the fiber core. For this purpose, the fiber is placed in the on-chip fiber chuck, which is precisely aligned to the QD-microlens thanks to the sub-$mu$m processing accuracy of high-resolution two-photon direct laser writing. This way, we obtain a fully integrated high-quality quantum device with broadband photon extraction efficiency, a single-mode fiber-coupling efficiency of 26%, a single-photon flux of 1.5 MHz at single-mode fibre output and a multi-photon probability of 13 % under pulsed optical excitation. In addition, the stable design of the developed fiber-coupled quantum device makes it highly attractive for integration into user-friendly plug-and-play quantum applications.
We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficie ncy of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.
168 - A. Javadi , I. Sollner , M. Arcari 2015
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quan tum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.
Satellite-based quantum communication is a promising approach for realizing global-scale quantum networks. For free-space quantum channel, single-mode fiber coupling is particularly important for improving signal-to-noise ratio of daylight quantum ke y distribution (QKD) and compatibility with standard fiber-based QKD. However, achieving a highly efficient and stable single-mode coupling efficiency under strong atmospheric turbulence remains experimentally challenging. Here, we develop a single-mode receiver with an adaptive optics (AO) system based on a modal version of the stochastic parallel gradient descent (M-SPGD) algorithm and test its performance over an 8 km urban terrestrial free-space channel. Under strong atmospheric turbulence, the M-SPGD AO system obtains an improvement of about 3.7 dB in the single-mode fiber coupling efficiency and a significant suppression of fluctuation, which can find its applications in free-space long-range quantum communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا