ﻻ يوجد ملخص باللغة العربية
Tropical cyclones (TCs) rank among the most costly natural disasters in the United States, and accurate forecasts of track and intensity are critical for emergency response. Intensity guidance has improved steadily but slowly, as processes which drive intensity change are not fully understood. Because most TCs develop far from land-based observing networks, geostationary satellite imagery is critical to monitor these storms. However, these complex data can be challenging to analyze in real time, and off-the-shelf machine learning algorithms have limited applicability on this front due to their ``black box structure. This study presents analytic tools that quantify convective structure patterns in infrared satellite imagery for over-ocean TCs, yielding lower-dimensional but rich representations that support analysis and visualization of how these patterns evolve during rapid intensity change. The proposed ORB feature suite targets the global Organization, Radial structure, and Bulk morphology of TCs. By combining ORB and empirical orthogonal functions, we arrive at an interpretable and rich representation of convective structure patterns that serve as inputs to machine learning methods. This study uses the logistic lasso, a penalized generalized linear model, to relate predictors to rapid intensity change. Using ORB alone, binary classifiers identifying the presence (versus absence) of such intensity change events can achieve accuracy comparable to classifiers using environmental predictors alone, with a combined predictor set improving classification accuracy in some settings. More complex nonlinear machine learning methods did not perform better than the linear logistic lasso model for current data.
Tropical cyclones (TCs), driven by heat exchange between the air and sea, pose a substantial risk to many communities around the world. Accurate characterization of the subsurface ocean thermal response to TC passage is crucial for accurate TC intens
Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long n
While water lifting plays a recognized role in the global atmospheric power budget, estimates for this role in tropical cyclones vary from zero to a major reduction in storm intensity. To assess its impact, here we consider work output of an infinite
Genomic imprinting has been thought to play an important role in seed development in flowering plants. Seed in a flowering plant normally contains diploid embryo and triploid endosperm. Empirical studies have shown that some economically important en
Genomic surveillance of SARS-CoV-2 has been instrumental in tracking the spread and evolution of the virus during the pandemic. The availability of SARS-CoV-2 molecular sequences isolated from infected individuals, coupled with phylodynamic methods,