ﻻ يوجد ملخص باللغة العربية
Genomic imprinting has been thought to play an important role in seed development in flowering plants. Seed in a flowering plant normally contains diploid embryo and triploid endosperm. Empirical studies have shown that some economically important endosperm traits are genetically controlled by imprinted genes. However, the exact number and location of the imprinted genes are largely unknown due to the lack of efficient statistical mapping methods. Here we propose a general statistical variance components framework by utilizing the natural information of sex-specific allelic sharing among sibpairs in line crosses, to map imprinted quantitative trait loci (iQTL) underlying endosperm traits. We propose a new variance components partition method considering the unique characteristic of the triploid endosperm genome, and develop a restricted maximum likelihood estimation method in an interval scan for estimating and testing genome-wide iQTL effects. Cytoplasmic maternal effect which is thought to have primary influences on yield and grain quality is also considered when testing for genomic imprinting. Extension to multiple iQTL analysis is proposed. Asymptotic distribution of the likelihood ratio test for testing the variance components under irregular conditions are studied. Both simulation study and real data analysis indicate good performance and powerfulness of the developed approach.
Understanding the relationship between genomic variation and variation in phenotypes for quantitative traits such as physiology, yield, fitness or behavior, will provide important insights for both predicting adaptive evolution and for breeding schem
Tropical cyclones (TCs) rank among the most costly natural disasters in the United States, and accurate forecasts of track and intensity are critical for emergency response. Intensity guidance has improved steadily but slowly, as processes which driv
The endowment effect, coined by Nobel Laureate Richard Thaler, posits that people tend to inflate the value of items they own. This bias was studied, both theoretically and empirically, with respect to a single item. Babaioff et al. [EC18] took a fir
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a bro
This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per