ﻻ يوجد ملخص باللغة العربية
Multi-principal-element metallic alloys have created a growing interest that is unprecedented in metallurgical history, in exploring the property limits of metals and the governing physical mechanisms. Refractory high-entropy alloys (RHEAs) have drawn particular attention due to their (i) high melting points and excellent softening-resistance, which are the two key requirements for high-temperature applications; and (ii) compositional space, which is immense even after considering cost and recyclability restrictions. However, RHEAs also exhibit intrinsic brittleness and oxidation-susceptibility, which remain as significant challenges for their processing and application. Here, utilizing natural-mixing characteristics amongst refractory elements, we designed a Ti38V15Nb23Hf24 RHEA that exhibits >20% tensile ductility already at the as-cast state, and physicochemical stability at high-temperatures. Exploring the underlying deformation mechanisms across multiple length-scales, we observe that a rare beta prime precipitation strengthening mechanism governs its intriguing mechanical response. These results also reveal the effectiveness of natural-mixing tendencies in expediting HEA discovery.
Generative deep learning is powering a wave of new innovations in materials design. In this article, we discuss the basic operating principles of these methods and their advantages over rational design through the lens of a case study on refractory h
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defec
Two new, low activation high entropy alloys (HEAs) TiVZrTa and TiVCrTa are studied for use as in-core, structural nuclear materials for in-core nuclear applications. Low-activation is a desirable property for nuclear reactors, in an attempt to reduce
Understanding the strengthening and deformation mechanisms in refractory high-entropy alloys (HEAs), proposed as new high-temperature material, is required for improving their typically insufficient room-temperature ductility. Here, density-functiona
High-entropy alloys (HEAs) composed of multiple principal elements have been shown to offer improved radiation resistance over their elemental or dilute-solution counterparts. Using NiCoFeCrMn HEA as a model, here we introduce carbon and nitrogen int