ﻻ يوجد ملخص باللغة العربية
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defect transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications
Two new, low activation high entropy alloys (HEAs) TiVZrTa and TiVCrTa are studied for use as in-core, structural nuclear materials for in-core nuclear applications. Low-activation is a desirable property for nuclear reactors, in an attempt to reduce
Understanding the strengthening and deformation mechanisms in refractory high-entropy alloys (HEAs), proposed as new high-temperature material, is required for improving their typically insufficient room-temperature ductility. Here, density-functiona
Multi-principal-element metallic alloys have created a growing interest that is unprecedented in metallurgical history, in exploring the property limits of metals and the governing physical mechanisms. Refractory high-entropy alloys (RHEAs) have draw
Generative deep learning is powering a wave of new innovations in materials design. In this article, we discuss the basic operating principles of these methods and their advantages over rational design through the lens of a case study on refractory h