ﻻ يوجد ملخص باللغة العربية
We biject two combinatorial models for tensor products of (single-column) Kirillov-Reshetikhin crystals of any classical type $A-D$: the quantum alcove model and the tableau model. This allows us to translate calculations in the former model (of the energy function, the combinatorial $R$-matrix, etc.) to the latter, which is simpler.
We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigate the combinatorics of affine Schubert calculus for type $A$. We introduce Murnaghan-Nakayama elements and Dunkl elements in the affine FK algeb
Quantum physics has revealed many interesting formal properties associated with the algebra of two operators, A and B, satisfying the partial commutation relation AB-BA=1. This study surveys the relationships between classical combinatorial structure
We show that a tensor product of nonexceptional type Kirillov--Reshetikhin (KR) crystals is isomorphic to a direct sum of Demazure crystals; we do this in the mixed level case and without the perfectness assumption, thus generalizing a result of Naoi
Let $Q_{n,d}$ denote the random combinatorial matrix whose rows are independent of one another and such that each row is sampled uniformly at random from the subset of vectors in ${0,1}^n$ having precisely $d$ entries equal to $1$. We present a short
A di-sk tree is a rooted binary tree whose nodes are labeled by $oplus$ or $ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di