ﻻ يوجد ملخص باللغة العربية
We show that a tensor product of nonexceptional type Kirillov--Reshetikhin (KR) crystals is isomorphic to a direct sum of Demazure crystals; we do this in the mixed level case and without the perfectness assumption, thus generalizing a result of Naoi. We use this result to show that, given two tensor products of such KR crystals with the same maximal weight, after removing certain $0$-arrows, the two connected components containing the minimal/maximal elements are isomorphic. Based on the latter fact, we reduce a tensor product of higher level perfect KR crystals to one of single-column KR crystals, which allows us to use the uniform models available in the literature in the latter case. We also use our results to give a combinatorial interpretation of the Q-system relations. Our results are conjectured to extend to the exceptional types.
A Demazure crystal is the basis at $q=0$ of a Demazure module. Demazure crystals play an important role in Schubert calculus because the character of a Demazure crystal in type A is identical to a key polynomial, which is closely related to Schubert
We prove the perfectness of Kirillov-Reshetikhin crystals $B^{r,s}$ for types $E_{6}^{(1)}$ and $E_{7}^{(1)}$ with $r$ being the minuscule node and $sgeq 1$ using the polytope model of KR crystals introduced by Jang.
We biject two combinatorial models for tensor products of (single-column) Kirillov-Reshetikhin crystals of any classical type $A-D$: the quantum alcove model and the tableau model. This allows us to translate calculations in the former model (of the
Type A Demazure atoms are pieces of Schur functions, or sets of tableaux whose weights sum to such functions. Inspired by colored vertex models of Borodin and Wheeler, we will construct solvable lattice models whose partition functions are Demazure a
This paper studies the properties of Demazure atoms and characters using linear operators and also tableaux-combinatorics. It proves the atom-positivity property of the product of a dominating monomial and an atom, which was an open problem. Furtherm