ترغب بنشر مسار تعليمي؟ اضغط هنا

Signals of Axion Like Dark Matter in Time Dependent Polarization of Light

427   0   0.0 ( 0 )
 نشر من قبل So Chigusa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the search for axion-like particles (ALPs) by using time series data of the polarization angle of the light. If the condensation of an ALP plays the role of dark matter, the polarization plane of the light oscillates as a function of time and we may be able to detect the signal of the ALP by continuously observing the polarization. In particular, we discuss that the analysis of the Fourier-transformed data of the time-dependent polarization angle is powerful to find the signal of the ALP dark matter. We pay particular attention to the light coming from astrophysical sources such as protoplanetary disks, supernova remnants, the foreground emission of the cosmic microwave background, and so on. We show that, for the ALP mass of $sim 10^{-22}$--$10^{-19} {rm eV}$, ALP searches in the Fourier space may reach the parameter region which is unexplored by other searches yet.



قيم البحث

اقرأ أيضاً

Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
128 - Tao Liu , George Smoot , Yue Zhao 2019
Non-relativistic QCD axions or axion-like particles are among the most popular candidates for cold Dark Matter (DM) in the universe. We proposed to detect axion-like DM, using linearly polarized pulsar light as a probe. Because of birefringence effec t potentially caused by an oscillating galactic axion DM background, when pulsar light travels across the galaxy, its linear polarization angle may vary with time. With a soliton+NFW galactic DM density profile, we show that this strategy can potentially probe an axion-photon coupling as small as $sim 10^{-13}$ GeV$^{-1}$ for axion mass $m_a sim 10^{-22}-10^{-20}$ eV, given the current measurement accuracy. An exclusion limit stronger than CAST ($ sim 10^{-10}$ GeV$^{-1}$) and SN1987A ($ sim 10^{-11}$ GeV$^{-1}$) could be extended up to $m_a sim 10^{-18}$ eV and $sim 10^{-19}$ eV, respectively.
Ultra-light axion-like particle (ULAP) is one of attractive candidates for cold dark matter. Because the de Broglie wavelength of ULAP with mass $sim 10^{-22} {rm eV}$ is $mathcal{O}({rm kpc})$, the suppression of the small scale structure by the unc ertainty principle can solve the core-cusp problem. Frequently, ULAP is assumed to be uniformly distributed in the present universe. In typical ULAP potentials, however, strong self-resonance at the beginning of oscillation invokes the large fluctuations, which may cause the formation of the dense localized object, oscillon. % Such a dense object lives for a long time, it may affect the cosmological evolution. In this paper, we confirm the oscillon formation in a ULAP potential by numerical simulation and analytically derive its lifetime.
We study the new mechanism of the axion production suggested recently in [1,2]. This mechanism is based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmo logical matter densities. We perform numerical simulations to evaluate the axion flux on the Earths surface. We examine annual and daily modulations, which have been studied previously and are known to occur for any type of dark matter. We also discuss a novel type of short time enhancements which are unique to the AQN model: the statistical fluctuations and burst-like amplification, both of which can drastically amplify the axion signal, up to a factor $sim10^2-10^3$ for a very short period of time. The present work studies the AQN-induced axions within the mass window $10^{-6}{rm,eV}lesssim m_alesssim10^{-3}rm,eV$ with typical velocities $langle v_aranglesim0.6c$. We also comment on the broadband detection strategy to search for such relativistic axions by studying the daily and annual time modulations as well as random burst-like amplifications.
Cosmological observations are used to test for imprints of an ultra-light axion-like field (ULA), with a range of potentials $V(phi)propto[1-cos(phi/f)]^n$ set by the axion-field value $phi$ and decay constant $f$. Scalar field dynamics dictate that the field is initially frozen and then begins to oscillate around its minimum when the Hubble parameter drops below some critical value. For $n!=!1$, once dynamical, the axion energy density dilutes as matter; for $n!=!2$ it dilutes as radiation and for $n!=!3$ it dilutes faster than radiation. Both the homogeneous evolution of the ULA and the dynamics of its linear perturbations are included, using an effective fluid approximation generalized from the usual $n=1$ case. ULA models are parameterized by the redshift $z_c$ when the field becomes dynamical, the fractional energy density $f_{z_c} equiv Omega_a(z_c)/Omega_{rm tot}(z_c)$ in the axion field at $z_c$, and the effective sound speed $c_s^2$. Using Planck, BAO and JLA data, constraints on $f_{z_c}$ are obtained. ULAs are degenerate with dark energy for all three potentials if $1+z_c lesssim 10$. When $3times10^4 gtrsim 1+z_c gtrsim 10 $, $f_{z_c}$ is constrained to be $ lesssim 0.004 $ for $n=1$ and $f_{z_c} lesssim 0.02 $ for the other two potentials. The constraints then relax with increasing $z_c$. These results strongly constrain ULAs as a resolution to cosmological tensions, such as discrepant measurements of the Hubble constant, or the EDGES measurement of the global 21 cm signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا