ﻻ يوجد ملخص باللغة العربية
Non-relativistic QCD axions or axion-like particles are among the most popular candidates for cold Dark Matter (DM) in the universe. We proposed to detect axion-like DM, using linearly polarized pulsar light as a probe. Because of birefringence effect potentially caused by an oscillating galactic axion DM background, when pulsar light travels across the galaxy, its linear polarization angle may vary with time. With a soliton+NFW galactic DM density profile, we show that this strategy can potentially probe an axion-photon coupling as small as $sim 10^{-13}$ GeV$^{-1}$ for axion mass $m_a sim 10^{-22}-10^{-20}$ eV, given the current measurement accuracy. An exclusion limit stronger than CAST ($ sim 10^{-10}$ GeV$^{-1}$) and SN1987A ($ sim 10^{-11}$ GeV$^{-1}$) could be extended up to $m_a sim 10^{-18}$ eV and $sim 10^{-19}$ eV, respectively.
We consider the search for axion-like particles (ALPs) by using time series data of the polarization angle of the light. If the condensation of an ALP plays the role of dark matter, the polarization plane of the light oscillates as a function of time
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more
Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universes energy content due to dark energy. So far, the microscopic properties of